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A Common Problem

The feasibility problem asks

Find x ∈ C =
N⋂
i=1

Ci ,

where C and the Ci ’s are subsets of a Hilbert space, H. Examples are:

Linear systems of equations; i.e. affine Ci ’s.

Matrix completion problems;1 e.g. PSD matrices, protein structure.

3-SAT, TetraVex, Sudoku, nonograms;2 (NP-complete, combin.)

Various inverse problems; e.g. phase retrieval.

Projection algorithms are frequently used to solve such problems. At each
step, these methods utilise the nearest point projections onto the Ci ’s
(rather than directly onto C ).

1Douglas–Rachford feasibility methods for matrix completion problems
with F.J. Aragón Artacho and J.M. Borwein. Submitted Aug. 2013. arXiv:1308.4243

2Recent results on Douglas–Rachford methods for combinatorial optimization
with F.J. Aragón Artacho and J.M. Borwein. Submitted 2013 arXiv:1305.2657
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A Variational Toolkit

Let S ⊆ H. The (nearest point) projection onto S is the (set-valued)
mapping,

PSx := argmin
s∈S

‖s − x‖.

Variational characterisation of convex projections

Let C ⊆ H be closed and convex. Then PCx exist uniquely, ∀x ∈ H, and

p = PCx ⇐⇒ p ∈ C and 〈x − p, c − p〉 ≤ 0, ∀c ∈ C .

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .
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Some Common Projection Methods

A significant portion of the literature focuses on results like the following:

Theorems

Let x0 ∈ H. If C1, . . . ,CN have certain properties then (xn) converges
in some sense to a point x having some properties.

Scheme Iteration

Cyclic Projections xn+1 :=
∏N

i=1 PCi
xn

Averaged Projections xn+1 := 1
N

∑N
i=1 PCi

xn

Relaxed projections xn+1 :=
∏N

i=1(λI + (1 − λ)PCi
)xn

Project-project-average xn+1 := 1
2

(I +
∏N

i=1 PCi
)xn

Douglas–Rachford xn+1 := 1
2

(I + RC2
RC1

)xn

Dykstra’s method x in := PCi
(x i−1

n − I in−1),

I in := x in − (x i−1
n − I in−1)

In the convex setting, projection methods are fairly well understood.

In the non-convex setting, there are some useful beginnings.

There also exists a large literature addressing convergence rates, etc.
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The Classical Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose C1,C2 ⊆ H are closed and convex with nonempty intersection.
For any x0 ∈ H define

xn+1 := TC1,C2 xn where TC1,C2 :=
I + RC2 RC1

2
.

Then xn
w .
⇀ x such that PC1 x ∈ C1 ∩ C2.

xn

RC1 xn

RC2 RC1 xn

xn+1 = TC1,C2 xn

C1

C2

C1 = {x ∈ H : ‖x‖ ≤ 1}, C2 = {x ∈ H : 〈a, x〉 = b}.
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The Douglas–Rachford Scheme (cont.)
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The Douglas–Rachford Scheme (cont.)

1 Despite insufficient theoretical justification, the Douglas–Rachford
scheme has been successfully applied to various hard non-convex
feasibility problems.

Other projection methods often get “stuck”.
An illustrative example: protein reconstruction (from Ref. 1).

Before reconstruction Douglas–Rachford method reconstruction:

500 steps 1,000 steps 2,000 steps

Actual Structure Method of cyclic projections reconstruction:

500 steps 1,000 steps 2,000 steps

Table: Reconstructions of the protein 1PTQ (404 atoms) from “NMR” data.

The method of cyclic projections works well in optical aberration
correction (Hubble) (a non-convex feasibility problem) why not here?
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The Douglas–Rachford Scheme (cont.)

2 Most projection algorithms can be naturally extended to handle
feasibility problems involving a large (finite) number of sets.

The
Douglas–Rachford method can only directly handle two set problems.
For more sets, one must use an equivalent problem posed in HN .
The “obvious” extensions fail.

Failure of three set Douglas–Rachford (Example due to Brailey Sims)

TA,B,C := 1
2 (I + RCRBRA).

Let x0 = (−
√

3,−1), α ∈ [2,∞].

A := {λ(0, 1) : |λ| ≤ α},

B := {λ(
√

3, 1) : |λ| ≤ α},

C := {λ(−
√

3, 1) : |λ| ≤ α}.

Then A ∩ B ∩ C = {0}.

We have x0 ∈ Fix TA,B,C . However,

PAx0,PBx0,PCx0 6= 0. A

B

C

x0

= RCRBRAx0

0

PAx0

PBx0

PCx0
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The Douglas–Rachford Scheme (cont.)

Our investigation was motivated by the classical Douglas–Rachford
scheme’s good behaviour on various non-convex problems, and the
absence of an obvious extension to feasibility problems with more than
two sets.

In the remainder of this talk I will discuss our findings. In
particular, I will discuss the content of our recent paper:

A Cyclic Douglas–Rachford Iteration Scheme with J.M. Borwein.
Published online in J. Optim. Theory. Appl., August 2013.

DOI: 10.1007/s10957-013-0381-x

Fig. A cyclic Douglas–Rachford
iteration for three balls
constraints drawn in Sage.
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Tools from Nonexpansive Mapping Theory

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.
firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.
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firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Proposition (Nonexpansive properties)

The following are equivalent.

T is firmly nonexpansive.

I − T is firmly nonexpansive.

2T − I is nonexpansive.

T = αI + (1− α)R, for α ∈ (0, 1/2] and some nonexpansive R.

Many other characterisations.
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Tools from Nonexpansive Mapping Theory

Let T : H → H. Then T is:
nonexpansive if

‖Tx − Ty‖ ≤ ‖x − y‖, ∀x , y ∈ H.
firmly nonexpansive if

‖Tx − Ty‖2 + ‖(I − T )x − (I − T )y‖2 ≤ ‖x − y‖2, ∀x , y ∈ H.

Nonexpansive properties of projections

Let A,B ⊆ H be closed and convex. Then

PA := argmins∈S ‖ · −s‖ is firmly nonexpansive.

RA := 2PA − I is nonexpansive.

TA,B := 1
2 (I + RBRA) is firmly nonexpansive.

Nonexpansive maps are closed under composition, convex combinations,
etc. Firmly nonexpansive maps need not be. E.g., Composition of two
projections onto subspace in R2 (Bauschke–Borwein–Lewis, 1997).
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Tools from Nonexpansive Mapping Theory (cont.)

asymptotically regular if, for all x ∈ H,

‖T n+1x − T nx‖ → 0.

Any firmly nonexpansive mapping with at least one fixed point is
asymptotically regular.

A useful Theorem for building iterative schemes:

Theorem (Opial, 1967)

Let T : H → H be nonexpansive and asymptotically regular. Set
xn+1 = Txn. Then xn

w .
⇀ x such that x ∈ Fix T .
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Cyclic Douglas–Rachford Scheme

In some sense, the classical Douglas–Rachford scheme is “unfair”.

Reflection is always performed first with respect to the same set.

A “fair” scheme might change the reflection order at each step.

For two sets,

xn+1 := TC2,C1 TC1,C2 xn =

(
I + RC1 RC2

2

)(
I + RC2 RC1

2

)
xn.

For three sets,

xn+1 := TC3,C1 TC2,C3 TC1,C2 xn

=

(
I + RC1 RC3

2

)(
I + RC3 RC2

2

)(
I + RC2 RC1

2

)
xn.

And so on . . .
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I + RC1 RC2

2

)(
I + RC2 RC1

2

)
xn.

For three sets,

xn+1 := TC3,C1 TC2,C3 TC1,C2 xn

=

(
I + RC1 RC3

2

)(
I + RC3 RC2

2

)(
I + RC2 RC1

2

)
xn.

And so on . . .
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Cyclic Douglas–Rachford Scheme (cont.)

Theorem (Borwein–T 2013)

Let C1, . . . ,CN ⊆ H be closed and convex with nonempty intersection.
For any x0 ∈ H, define3

xn+1 = T[C1 C2 ...CN ]xn where T[C1 C2 ...CN ] :=
N∏
i=1

TCi ,Ci+1 .

Then xn
w .
⇀ x such that PCi x = PCj x , for all indices i , j . In particular,

PCj x ∈
N⋂
i=1

Ci , for each index j .

Proof.

First show Fix T[C1 ...,CN ] = ∩Ni=1 Fix TCi ,Ci+1 6= ∅. Establish weak
convergence to a fixed point, and use the variational characterisation of
convex projections.

3Here and elsewhere, indices are understood modulo N.
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Example Revisited

2 ≤ α ≤ ∞.
A := {λ(0, 1) : |λ| ≤ α},

B := {λ(
√

3, 1) : |λ| ≤ α},

C := {λ(−
√

3, 1) : |λ| ≤ α}.

A

BC

x0
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Cyclic Douglas–Rachford (cont.)

Can the iteration fail to converge in norm?

Yes – we modify an example originally due to Hundal (2004).

Failure of Norm Convergence (Hundal, Matouŝková–Reich, Kopecká)

Let H = `2 and {ei} denote the standard basis. Define

C1 = {x ∈ H : 〈e1, x〉 = x1 = 0}, C2 = an “unnatural” cone.

Then C1 ∩ C2 = {0}. There exists x0 ∈ H such that T n
[C1 C2]x0 does not

converge in norm

C1 is a closed subspace, C2 a closed convex cone.

For appropriate initial points, the cyclic Douglas–Rachford iterations
and the alternating projections iterations coincide.

Both converge weakly to 0, the unique point in the intersection.

(Bauschke–Borwein 1993) Conjecture norm convergence if C1 is
affine, finite codimension, and C2 = L+

2 (Ω, µ). True for codim. 1.
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Cyclic Douglas–Rachford (cont.)
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General Framework

The cyclic Douglas–Rachford method framework applies more generally.

Theorem (Borwein–T 2013)

Let C1, . . . ,CN ⊆ H be closed and convex with nonempty intersection.
For any x0 ∈ H, define

xn+1 := Txn where T :=
M∏
i=1

Ti .

Further, suppose

1 T is nonexpansive and asymptotically regular,

2 Fix T =
⋂M

i=1 Fix Ti 6= ∅,
3 PCi Fix Ti ⊆ Ci+1, for each index i .

Then xn
w .
⇀ x such that PCi x = PCj x , for all indices i , j . In particular,

PCj x ∈
N⋂
i=1

Ci , for each index j .
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Averaged Douglas–Rachford Scheme

Theorem (Borwein–T 2013)

Let C1,C2, . . . ,CN ⊆ H be closed and convex with nonempty
intersection. For any x0 ∈ H, define

xn+1 :=
1

N

(
N∑
i=1

TCi ,Ci+1

)
xn.

Then xn
w .
⇀ x such that PCi x = PCj x , for all indexes i , j . In particular,

PCj x ∈
N⋂
i=1

Ci , for each index j .

Proof. (Performed in HN).

Apply the previous Theorem to the sequence defined by

xn+1 := PD(T1,T2, . . . ,TN)xn,

where D = {(x , x , . . . , x) ∈ HN : x ∈ H}.

Other applicable variants! e.g. cyclic project-project-average.
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Infeasible Iterations (Alternating Projections)

Consider A,B ⊆ H with possibly empty intersection. For convenience, we
introduce the sequences (an) and (bn) where

x0
PA7→ a1

PB7→ b1
PA7→ a2

PB7→ b2
PA7→ a3

PB7→ . . .

Further define

E := {x ∈ A : d(x ,B) = d(A,B)}, F := {x ∈ B : d(x ,A) = d(A,B)}.

Theorem (Bauschke–Borwein 1994)

Let A,B ⊆ H be closed and convex. Exactly one of the following
alternatives hold.

(a) E ,F = ∅, ‖an‖, ‖bn‖ → ∞.

(b) E ,F 6= ∅, an
w .
⇀ a ∈ E , bn

w .
⇀ b ∈ F where b = PBa and a = PAb.

Furthermore, ‖a− b‖ = d(A,B) and bn − an, bn − an+1 → b − a.

Does not generalise to more than two sets: “There is no variational
characterization of the cycles in the method of periodic projections”,
Baillion–Combettes–Cominetti (2012).
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Infeasible Iterations (cont.)

Theorem (Bauschke–Borwein 1994)

Let A,B ⊆ H be closed and convex. Exactly one of the following
alternatives hold.

(a) E ,F = ∅, ‖an‖, ‖bn‖ → ∞.

(b) E ,F 6= ∅, an
w .
⇀ a ∈ E , bn

w .
⇀ b ∈ F where b = PBa and a = PAb.

Furthermore, ‖a− b‖ = d(A,B) and bn − an, bn − an+1 → b − a.

A := R× R−

B := epi
(

1
x + 1

)
x0

a1 a2 ...

b1b2 ...

A := R× R−

B := epi(x2 + 1)

x0

a1 ...

b1

a

b...

Example of (a). Example of (b).
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Infeasible Iterations (Alternating Douglas-Rachford)

Similarly we introduce the sequences (αn) and (βn) where

x0
TA,B7→ β1

TB,A7→ α1
TA,B7→ β2

TB,A7→ α2
TA,B7→ β3

TB,A7→ . . .

The difficulty is Fix TA,B 6= ∅ ⇐⇒ A ∩ B 6= ∅. In the empty case,

Fix T[C1 ...,CN ] ⊇
N⋂
i=1

Fix TCi ,Ci+1 = ∅.

Theorem (Borwein–T 201?)

Let A,B ⊆ H be closed and convex. Exactly one of the following
alternatives hold.

(a) E ,F ,Fix T[AB],Fix T[B A] = ∅, and ‖αn‖, ‖βn‖ → ∞.

(b) E ,F ,Fix T[AB],Fix T[B A] 6= ∅, and

αn
w .
⇀ α ∈ Fix T[AB], βn

w .
⇀ β ∈ Fix T[B A],

where β = TA,Bα and α = TB,Aβ. Furthermore,

β − α = PBβ − PAα, ‖PBβ − PAα‖ = d(A,B),

and βn − αn, βn+1 − α→ β − α.

cf. Classical Douglas–Rachford: If A ∩ B = ∅ then ‖xn‖ → ∞.
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Closing Remarks and Future Work

Some avenues for future investigation include:
1 Better understand asymptotics in the (two set) infeasible case.

Is there a variational characterisation for more than two sets?

2 Norm convergence assuming regularity a lá Bauschke–Borwein.
3 Non-convex settings:

Euclidean sphere and affine subspace: Aragón–Borwein–Sims.
Local relaxations of firm nonexpansivity: Hesse–Luke.

4 Applications & computational studies: Initial results are promising!

200 ball constraints in R2000, implemented in Python:

Classical Douglas–Rachford: ∼ 30s for a solution with error ∼ 10−4.
Cyclic Douglas–Rachford: ∼ 0.5s for a solution with error ∼ 10−25.

A Cyclic Douglas–Rachford Iteration Scheme with J.M. Borwein. Published online in
J. Optim. Theory. Appl., August 2013. DOI: 10.1007/s10957-013-0381-x

Many resources can be found at:

http://carma.newcastle.edu.au/DRmethods
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http://link.springer.com/article/10.1007/s10957-013-0381-x
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