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Introduction: Projection Methods

Projection methods are a family of iterative algorithms useful for solving
the feasibility problem which asks:

find x ∈ C1 ∩ C2 ⊆ H,
where C1 and C2 are constraint sets in a Hilbert space H.

At each stage, employ (nearest point) projections w.r.t. the
individual constraint sets. The solution is obtained in the limit.
For (closed) convex constraint sets, behavior is fairly well
understood – the methods can be analyzed using non-expansivity
properties of convex projection operators.
When one or more of the constraint sets are non-convex, theory is
largely unknown. However, one particular projection method, the
Douglas–Rachford method, has been (experimentally) observed to
successfully solve a large range of non-convex problems.

Examples:
Solving Sudoku and nonogram puzzles, 8-queens and generalizations,
enumerating Hadamard matrices, phase retrieval & ptychography, . . .

The focus of this talk is application of the Douglas–Rachford method as
a heuristic for non-convex feasibility problems guided by convex theory.

Recall that a set S is convex if, λx + (1− λ)y ∈ S, (∀x , y ∈ S)(∀λ ∈ [0, 1]).
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Introduction: Variational Tools

Let S ⊆ H. The (nearest point) projection onto S is the (set-valued)
mapping,

PSx := arg min
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .
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The Douglas–Rachford Algorithm

Given an initial point x0 ∈ H, the Douglas–Rachford method is the
fixed-point iteration given by

xn+1 = TC1,C2xn where TC1,C2 :=
Id + RC2RC1

2
.

If x is a fixed point of TC1,C2 then PC1x ∈ C1 ∩ C2.

xn

RC1xn

RC2RC1xn

xn+1 = Txn

C1

C2

C1 = {x ∈ H : ‖x‖ ≤ 1}, C2 = {x ∈ H : 〈a, x〉 = b}.
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The Douglas–Rachford Algorithm

First studied by Douglas & Rachford (1956) in connection with heat
conduction problems, and later by Lions & Mercier (1979) for
finding a zero in the sum of two maximal monotone operators.

Theorem (Basic behaviour of the Douglas–Rachford method)

Suppose C1,C2 are closed convex subsets of a finite dimensional Hilbert
space H. For any x0 ∈ H, define xn+1 = TC1,C2xn.

1 If C1 ∩ C2 6= ∅, then xn → x such that PC1x ∈ C1 ∩ C2.

2 If C1 ∩ C2 = ∅, then ‖xn‖ → +∞.

It is important to monitor the shadow sequence (PC1xn)∞n=1, not just
the iterates (xn)∞n=1.
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Protein Confirmation Determination and EDMs

Proteins are large biomolecules comprising of multiple amino acid chains.

Generic amino acid Myoglobin

They participate in virtually every cellular process, and knowledge of
structural conformation gives insights into the mechanisms by which they
perform.
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Protein Confirmation Determination and EDMs

One technique that can be used to determine conformation is nuclear
magnetic resonance (NMR) spectroscopy. However, NMR is only able to
resolve short inter-atomic distances (i.e., < 6Å). For 1PTQ (404 atoms)
this corresponds to < 8% of the total inter-atomic distances.

We say D = (Dij) ∈ Rm×m is a Euclidean distance matrix (EDM) if there
exists points p1, . . . , pm ∈ Rq such that

Dij = ‖pi − pj‖2.

When this holds for points in Rq, we say that D is embeddable in Rq.

We formulate protein reconstruction as a matrix completion problem:

Find a member from a given family of matrices,
knowing only a subset of its entries.

Find a EDM, embeddable in R3, knowing only short inter-atomic distances.
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A Feasibility Problem Formulation

Denote by Q the Householder matrix defined by

Q := I − 2vvT

vT v
,where v =

[
1, 1, . . . , 1, 1 +

√
m
]T ∈ Rm.

Theorem (Hayden–Wells 1988)

A nonnegative, symmetric, hollow matrix X , is a EDM iff X̂ ∈ R(m−1)×(m−1) in

Q(−X )Q =

[
X̂ d
dT δ

]
(∗)

is positive semi-definite (PSD). In this case, X is embeddable in Rq where

q = rank(X̂ ) ≤ m − 1 but not in Rq−1.

Let D denote the partial EDM (obtained from NMR), and Ω ⊂ N× N
the set of indices for known entries. In light of the above
characterization, the protein reconstruction problem is the feasibility
problem with constraints:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ 3}.
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A Feasibility Problem Formulation

Recall the constraint sets:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ 3}.

Now,

C1 is a convex set (intersection of cone and affine subspace).

C2 is convex iff m ≤ 2 (in which case C2 = Rm×m).

For interesting problems, C2 is never convex.
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Computing Projections and Reflections

Recall the constraint sets:

C1 = {X ∈ Rm×m : X ≥ 0,Xij = Dij for (i , j) ∈ Ω},

C2 = {X ∈ Rm×m : X̂ in (∗) is PSD with rank X̂ ≤ 3}.

The projection onto C1 is given (point-wise) by

PC1 (X )ij =

{
Dij if (i , j) ∈ Ω,

max{0,Xij} otherwise.

The projection onto C2 is the set

PC2
(X ) =

{
−Q

[
Ŷ d
dT δ

]
Q : Q(−X )Q =

[
X̂ d
dT δ

]
,

X̂ ∈ R(m−1)×(m−1),
d ∈ Rm−1, δ ∈ R, Ŷ ∈ PS X̂

}
,

where S is the set of PSD matrices of rank 3 or less.

Computing PS(X̂ ) = spectral decomposition → threshold eigenvalues.
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Numerical and Visual Experiments

The reconstruction approach can be summarised as follows:

Reconstruct
EDM using

Douglas–Rachford

Convert EDM
to points in R3

Partial EDM

Random
initialization

Draw using
Swiss-PdbViewer1

1http://spdbv.vital-it.ch/
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Experiment: Six Test Proteins

Experiment: We consider the simplest realistic protein conformation
determination problem.

NMR experiments were simulated for proteins with known conformation
by computing the partial EDM containing all inter-atomic distances < 6Å.

Table : Six proteins from the RCSB Protein Data Bank.2

Protein # Atoms # Residues Known Distances

1PTQ 404 50 8.83%
1HOE 581 74 6.35%
1LFB 641 99 5.57%
1PHT 988 85 4.57%
1POA 1067 118 3.61%
1AX8 1074 146 3.54%

2http://www.rcsb.org/
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Experiment: Six Test Proteins

Table : Average (worst) results: 5,000 iterations, five random initializations.

Protein Problem Size Rel. Error (dB) RMS Error Max Error

1PTQ 81,406 -83.6 (-83.7) 0.02 (0.02) 0.08 (0.09)
1HOE 168,490 -72.7 (-69.3) 0.19 (0.26) 2.88 (5.49)
1LFB 205,120 -47.6 (-45.3) 3.24 (3.53) 21.68 (24.00)
1PHT 236,328 -60.5 (-58.1) 1.03 (1.18) 12.71 (13.89)
1POA 568,711 -49.3 (-48.1) 34.09 (34.32) 81.88 (87.60)
1AX8 576,201 -46.7 (-43.5) 9.69 (10.36) 58.55 (62.65)

The reconstructed EDM is compared to the actual EDM using:

Relative error (decibels) = 10 log10

(
‖PAxn − PBRAxn‖2

‖PAxn‖2

)
.

The reconstructed points in R3 are then compared using:

RMS Error =

(
m∑

k=1

‖zk − zactual
k ‖2

)1/2

, Max Error = max
k=1,...,m

‖zk − zactual
k ‖,

which are computed up to translation, reflection and rotation.
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Experiment: Six Test Proteins

How do these error metrics compare visually to our expectations?

1HOE (actual) 1LFB (actual) 1POA (actual)

1HOE (-72.7dB) 1LFB (-60.5dB) 1POA (-49.3dB)

1HOE is good, 1LFB is mostly good, and 1POA has two good pieces.
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Experiment: A Better Stopping Criterion?

On revisiting the problem, an optimised implementation gave a ten-fold
speed-up. This allowed for the following experiment to be performed:

Figure: Relative error by iterations (vertical axis logarithmic).

For < 5, 000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

Is early termination to blame? Terminate when error < −100dB.

Matthew K. Tam (University of Newcastle) Reflection Methods for Inverse Problems



Experiment: A Better Stopping Criterion?

On revisiting the problem, an optimised implementation gave a ten-fold
speed-up. This allowed for the following experiment to be performed:

Figure: Relative error by iterations (vertical axis logarithmic).

For < 5, 000 iterations, the error exhibits non-monotone oscillatory
behaviour. It then decreases sharply. Beyond this progress is slower.

Is early termination to blame? Terminate when error < −100dB.

Matthew K. Tam (University of Newcastle) Reflection Methods for Inverse Problems



A More Robust Stopping Criterion

The “un-tuned” implementation (worst reconstruction from previous slide):

1POA (actual) 5,000 steps (∼2d), -49.3dB

The optimised implementation:

1POA (actual) 28,500 steps (∼1d), -100dB (perfect!)

Similar results observed for the other test proteins.
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Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?
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Experiment: Why Use the Douglas–Rachford Method?

First 3,000 steps of the 1PTQ reconstruction
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Experiment: Why Use the Douglas–Rachford Method?

Experiment: There are many projection methods, so why should we use
the Douglas–Rachford method?

A simpler projection method is the method of alternating projections.
Given a point y0 ∈ H is given by the fixed-point iteration

yn+1 := PC2PC1yn.

Before reconstruction Douglas–Rachford method reconstruction:

500 steps, -25 dB 1,000 steps,-30 dB 2,000 steps, -51 dB

1PTQ (actual) Method of alternating projections reconstruction:

500 steps,-22 dB 1,000 steps, -24 dB 2,000 steps, -25 dB
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Experiment: Why Use the Douglas–Rachford Method?

Recall from earlier:

Theorem (Basic behaviour of the Douglas–Rachford method)

Suppose C1,C2 are closed convex subsets of a finite dimensional Hilbert
space H. For any x0 ∈ H, define xn+1 = TC1,C2xn.

1 If C1 ∩ C2 6= ∅, then xn → x such that PC1x ∈ C1 ∩ C2.

2 If C1 ∩ C2 = ∅, then ‖xn‖ → +∞.

The Douglas–Rachford method can be sensitive to perturbations in
the constraint sets.

In contrast the alternating projections sequence might still converge
even if the intersection section is empty.

Conjecture: The Douglas–Rachford method’s instability stops it
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Ongoing Work: Towards Theoretical Justification

Phan (arXiv:1401.6509v2) recently showed local convergence of the method for
constraints which are super-regular, and have strongly regular intersection.

Near solutions to the EDM problem:
It is straightforward to check super-regularity holds.
Strongly regular intersection can be “checked” by showing there is no
non-zero solution to the linear system defined by parameters depending on
the experimentally collected data. More precisely,

(Y , Ŷ ) s.t. Q(−Y )Q =

[
Ŷ 0
0 0

]
, X̂ Ŷ = 0,Yij = 0 for all (i , j) 6∈ Ω.

Probable local convergence for low-rank EDM reconstruction

Suppose X ∈ C1 ∩ C2 ⊆ Rm×m is embeddable in Rs but not in Rs−1 where

X ≡ −Q
[
X̂ d
dT δ

]
Q,

and the directions of eigenvectors of X̂ are distributed uniformly at random
(on the sphere). Further, suppose s = m − 2. For initial point sufficiently close
to X , the Douglas–Rachford method almost surely converges to a solution.

Main idea: Characterise Mordukhovich normal cone to low-rank PSD matrices.
Argue the system has no non-zero solution if some distances are unknown.

Matthew K. Tam (University of Newcastle) Reflection Methods for Inverse Problems
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Ŷ 0
0 0

]
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Concluding Remarks and Future Work

The Douglas–Rachford method can predict protein conformation using
only short-range distances. It performs better than theory suggests.

Ongoing work is focusing on conditions for local convergence.

The Douglas–Rachford method is a general purpose algorithm. There is
potential for problem specific improvements which exploit special
structure in the constraint sets.

Other fruitful applications? We have also investigated an analogous bulk
structure determination problem arising in ionic liquid chemistry.

When presented with a feasibility problem, it is well worth investigating if the

Douglas–Rachford method can deal with it – the method is conceptually simple

and easy to implement.

Douglas–Rachford feasibility methods for matrix completion problems with F.J. Aragón Artacho
& J.M. Borwein. ANZIAM J., 55(4):299–325, 2014. arXiv:1312.7323

Reflection methods for inverse problems with application to protein conformation determination
with J.M. Borwein. Springer volume on the CIMPA school Generalized Nash Equilibrium Problems,
Bilevel programming and MPEC New Delhi, India, Dec. 2012. In press, Aug. 2014. arXiv:1312.7323

On the regularity of nonnegative sparsity sets. In preparation.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/

Matthew K. Tam (University of Newcastle) Reflection Methods for Inverse Problems
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