# Reconstruction Algorithms for Blind Ptychographic Imaging 

Matthew K. Tam<br>School of Mathematical and Physical Sciences<br>University of Newcastle AustraliaTHE UNIVERSITY OF NEWCASTLE

AUSTRALIA


Joint work with R. Hesse, D.R. Luke and S. Sabach


GEORG-AUGUST-UNIVERSITÄT GÖtTINGEN

CARMA Workshop on Mathematics and Computation June 19-21, 2015

## What is Ptychography?

- An unknown specimen is illuminated by a localized illumination function resulting in an exit-wave whose intensity is observed.
- A ptychography dataset is a series of these observations, each of which is obtained by shifting the illumination function to a different position relative to the specimen. Neighbouring illumination regions overlap.
- Given a ptychographic dataset, the blind ptychography problem is to simultaneously reconstruct the relative phase of the specimen and illumination function.


Figure : An illumination function (left), specimen (center), and exit-wave (right).

## What is Ptychography?

The mathematical model is:

- $x \in \mathbb{C}^{n \times n}$ is the unknown illumination function,
- $y \in \mathbb{C}^{n \times n}$ is the unknown specimen.
- $\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right) \in\left(\mathbb{C}^{n \times n}\right)^{m}$ is an $m$-tuple of diffraction patterns.
- $S_{j}: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ is a shift map with $S_{j}(x)$ corresponding to the position of the illumination function for the $j^{\text {th }}$ diffraction pattern.
- The elements of the triple $(x, y, z)$ are related by:

$$
S_{j}(x) \odot y=z_{j} \quad \text { for } \quad j=1,2, \ldots, m .
$$



Figure : An example of $S_{j}(x) \odot y=z_{j}$ with $S_{j}$ localising " $x$ " to the girl's head.

## What is Ptychography?

In a ptychography experiment we observe the $m$-matrices

$$
b_{1}, \ldots, b_{m} \in \mathbb{R}_{+}^{n \times n}
$$

where $b_{j}$, for $j=1,2, \ldots, m$, are given by

$$
b_{j}=\left|\mathcal{F}\left(z_{j}\right)\right|=\left|\mathcal{F}\left(S_{j}(x) \odot y\right)\right| .
$$

Here $\mathcal{F}$ is the 2D Fourier transform, and $|\cdot|$ is taken element-wise.
The blind ptychography problem is:
Given $b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}_{+}^{n \times n}$ reconstruct the triple $(x, y, \mathbf{z})$.

- III-posed, inverse problem with many solutions $\Rightarrow$ hopeless without a priori knowledge.


## Two Algorithms in the Literature

Maiden \& Rodenburg proposed:


With update functions:
$O_{j+1}(\mathbf{r})=O_{j}(\mathbf{r})+\alpha \frac{P_{j}^{\prime}\left(\mathbf{r}-\mathbf{R}_{s i 0}\right)}{\left|P_{j}\left(\mathbf{r}-\mathbf{R}_{\mathrm{sjj}}\right)\right|_{\text {max }}^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right) . \quad P_{j+1}(\mathbf{r})=P_{j}(\mathbf{r})+\beta \frac{O_{j}^{\prime}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)}{\left|O_{j}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)\right|_{\max }^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right)$.

## Maiden \& Rodenburg proposed:



## Thibault et al. proposed:

$$
\begin{align*}
& \Pi_{\mathrm{F}}(\Psi): \psi_{j} \rightarrow \psi_{j}^{\mathrm{F}}=p_{\mathrm{F}}\left(\psi_{j}\right)  \tag{4}\\
& \Pi_{\mathrm{O}}(\Psi): \psi_{j} \rightarrow \psi_{j}^{\mathrm{o}}(\mathbf{r})=\hat{P}\left(\mathbf{r}-\mathbf{r}_{j}\right) \hat{O}(\mathbf{r})  \tag{6}\\
& \Psi_{n+1}=\Psi_{n}+\Pi_{\mathrm{F}}\left[2 \Pi_{\mathrm{O}}\left(\Psi_{n}\right)-\Psi_{n}\right]-\Pi_{\mathrm{o}}\left(\Psi_{n}\right) . \tag{9}
\end{align*}
$$

## On computing (6):

$\hat{O}(\mathbf{r})=\frac{\sum_{j} \hat{P}^{*}\left(\mathbf{r}-\mathbf{r}_{j}\right) \psi_{j}(\mathbf{r})}{\sum_{j}\left|\hat{P}\left(\mathbf{r}-\mathbf{r}_{j}\right)\right|^{2}}$,
$\hat{P}(\mathbf{r})=\frac{\sum_{j} \hat{O}^{*}\left(\mathbf{r}+\mathbf{r}_{j}\right) \psi_{j}\left(\mathbf{r}+\mathbf{r}_{j}\right)}{\sum_{j} \mid \hat{O}\left(\mathbf{r}+\left.\mathbf{r}_{j}\right|^{2}\right.}$.
In the event the probe $\hat{P}$ is already known, the overlap projection is given by (6), where $\hat{O}$ is computed with Eq. (7). If $\hat{P}$ also needs to be retrieved, both Eqs. (7) and (8) need to be simultaneously solved. While the system cannot be decoupled analytically, applying the two equations in turns for a few iterations was observed to be an efficient procedure to find the minimum. Within the reconstruction scheme, initial guesses for $\hat{P}$ and $\hat{O}$ are readilv available from the previous iteration-adart

## With update functions:

$O_{j+1}(\mathbf{r})=O_{j}(\mathbf{r})+\alpha \frac{P_{j}^{*}\left(\mathbf{r}-\mathbf{R}_{s(0)}\right)}{\left|P_{j}\left(\mathbf{r}-\mathbf{R}_{\mathbf{s j})}\right)\right|_{\text {max }}^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right) . \quad P_{j+1}(\mathbf{r})=P_{j}(\mathbf{r})+\beta \frac{O_{j}^{\prime}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)}{\left|O_{j}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)\right|_{\max }^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right)$.

## Our Framework

- Perfectly good algorithmic schemes, which have been shown to work.
- Not clear what (optimisation?) problem the algorithms solve.
- Cannot be cast as projection-type algorithms solving feasibility problems, although they seem closely related.
- We considered the following optimisation problem:

$$
\begin{array}{ll}
\min & F(x, y, \mathbf{z}):=\sum_{j=1}^{m}\left\|S_{j}(x) \odot y-z_{j}\right\|^{2} \\
\text { s.t. } & x \in X=\left\{x:\|x\|_{\infty} \leq M_{x},\left.x\right|_{\mathbb{I}_{\dot{c}}}=0\right\}  \tag{P}\\
& y \in Y=\left\{y:\|y\|_{\infty} \leq M_{y}\right\}, \\
& \mathbf{z} \in Z=\left\{\mathbf{z}:\left|\mathcal{F}\left(z_{j}\right)\right|=b_{j} \text { for } j=1,2, \ldots, m\right\},
\end{array}
$$

where $M_{x}, M_{y} \in \mathbb{R}$ are bounds, and $\mathbb{I}_{x}$ is an index set (support of $x$ ).

- Separable constraint sets coupled through a "nice" objective function.
- (P) is equivalent to the formally unconstrained problem:

$$
\min \Psi(x, y, z):=F(x, y, z)+\iota_{X}(x)+\iota_{Y}(y)+\iota_{Z}(\mathbf{z})
$$

where $\iota_{C}(w)$ is the indicator function of the set $C$ which takes the value 0 if $w \in C$, and $+\infty$ if $w \notin C$.

## A Naive Approach: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):
Initialization. Choose $\left(x^{0}, y^{0}, z^{0}\right) \in X \times Y \times Z$.
General Step. $(k=0,1, \ldots)$

1. Select

$$
x^{k+1} \in \underset{x \in X}{\arg \min } F\left(x, y^{k}, z^{k}\right),
$$

2. Select

$$
y^{k+1} \in \underset{y \in Y}{\arg \min } F\left(x^{k+1}, y, z^{k}\right),
$$

3. Select

$$
z^{k+1} \in \underset{z \in Z}{\arg \min } F\left(x^{k+1}, y^{k+1}, z\right) .
$$

## A Naive Approach: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):
Initialization. Choose $\left(x^{0}, y^{0}, z^{0}\right) \in X \times Y \times Z$.
General Step. $(k=0,1, \ldots)$

1. Select

$$
x^{k+1} \in \underset{x \in X}{\arg \min } F\left(x, y^{k}, z^{k}\right)
$$

2. Select

$$
y^{k+1} \in \underset{y \in Y}{\arg \min } F\left(x^{k+1}, y, \mathbf{z}^{k}\right)
$$

3. Select

$$
z^{k+1} \in \underset{z \in Z}{\arg \min } F\left(x^{k+1}, y^{k+1}, z\right) .
$$

What's involved? Roughly speaking, to compute Step 1 we must minimise the terms of the form $\left\|S_{j}(x) \odot y^{k}-z_{j}^{k}\right\|^{2}$. If this is zero, then

$$
S_{j}(x) \odot y^{k}=z_{j}^{k} \Longrightarrow S_{j}(x)=z_{j}^{k} \oslash y_{k} \Longrightarrow x=S_{j}^{-1}\left(z_{j}^{k} \oslash y_{k}\right) .
$$

- Inverting $S_{j}$ is stable (just "un-shift").
- Division by $y_{k}$ is unstable (divide by zero)
- Similar observations apply to Step 2.
- Step 3 is unstable but there are regularisation schemes in the literature.


## PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to $F$ :

We regularise doing the following to $F$ :

- Linearising Steps $1 \& 2$. For Step 1, we have

$$
F\left(x, y^{k}, z^{k}\right) \quad \longrightarrow \quad F\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)+\left\langle x-x^{k}, \nabla_{x} F\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\rangle .
$$

We regularise doing the following to $F$ :

- Linearising Steps $1 \& 2$. For Step 1, we have

$$
F\left(x, y^{k}, z^{k}\right) \quad \longrightarrow \quad F\left(x^{k}, y^{k}, z^{k}\right)+\left\langle x-x^{k}, \nabla_{x} F\left(x^{k}, y^{k}, z^{k}\right)\right\rangle .
$$

- Adding a proximal term to Steps 1, 2 \& 3. For Step 1, such a term looks like

$$
+\frac{\alpha^{k}}{2}\left\|x-x^{k}\right\|^{2}
$$

where $\alpha^{k}>0$ is dependent on $y^{k}$ and $\mathbf{z}^{k}$.

We regularise doing the following to $F$ :

- Linearising Steps $1 \& 2$. For Step 1, we have

$$
F\left(x, y^{k}, z^{k}\right) \quad \longrightarrow \quad F\left(x^{k}, y^{k}, z^{k}\right)+\left\langle x-x^{k}, \nabla_{x} F\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\rangle
$$

- Adding a proximal term to Steps 1, 2 \& 3. For Step 1, such a term looks like

$$
+\frac{\alpha^{k}}{2}\left\|x-x^{k}\right\|^{2}
$$

where $\alpha^{k}>0$ is dependent on $y^{k}$ and $z^{k}$.
The regularised version of Step 1 becomes:

$$
x^{k+1} \in \underset{x \in X}{\arg \min }\left\{\left\langle x-x^{k}, \nabla_{x} F\left(x^{k}, y^{k}, z^{k}\right)\right\rangle+\frac{\alpha^{k}}{2}\left\|x-x^{k}\right\|^{2}\right\}
$$

The other steps are similar.

Proximal Block Implicit-Explicit Algorithm:
Initialization. Choose $\alpha, \beta>1, \gamma, \eta_{x}, \eta_{y}>0,\left(x^{0}, y^{0}, z^{0}\right) \in X \times Y \times Z$. General Step. ( $k=0,1, \ldots$ )

1. Set $\alpha^{k}=\alpha \max \left\{L_{x}\left(y^{k}, \mathbf{z}^{k}\right), \eta_{x}\right\}$ and select

$$
x^{k+1} \in P_{X}\left(x^{k}-\frac{2}{\alpha^{k}} \sum_{j=1}^{m} S_{j}^{-1}\left(\overline{y^{k}}\right) \odot S_{j}^{-1}\left(y^{k}-z_{j}^{k}\right)\right)
$$

2. Set $\beta^{k}=\beta \max \left\{L_{y}\left(x^{k+1}, z^{k}\right), \eta_{y}\right\}$ and select

$$
y^{k+1} \in P_{\curlyvee}\left(y^{k}-\frac{2}{\beta^{k}} \sum_{j=1}^{m} S_{j}\left(\overline{x^{k+1}}\right) \odot\left(S_{j}\left(x^{k+1}\right)-z_{j}^{k}\right)\right),
$$

3. Select, for $j=1,2 \ldots, m$,

$$
\mathbf{z}_{j}^{k+1} \in P_{Z}\left(\left[\frac{2}{2+\gamma_{k}} S_{j}\left(x^{k+1}\right) \odot y^{k+1}+\frac{\gamma_{k}}{2+\gamma_{k}} z_{j}^{k}\right]_{j=1}^{m}\right)
$$

Here $L_{x}\left(y^{k}, z^{k}\right)\left(\operatorname{resp} L_{y}\left(x^{k+1}, z^{k}\right)\right)$ denotes the partial Lipschitz constant of $\nabla_{x} F\left(x, y^{k}, z^{k}\right)\left(\right.$ resp. $\left.\nabla_{y} F\left(x^{k+1}, y, z^{k}\right)\right)$, and the projection onto a set $C$ is given by

$$
P_{C}(w):=\underset{u \in C}{\arg \min }\|u-w\|^{2}
$$

## PHeBIE: Convergence Theorem

## Theorem (Hesse-Luke-Sabach-T, 2015)

Let $\left\{\left(x^{k}, y^{k}, z^{k}\right)\right\}_{k \in \mathbb{N}}$ be a sequence generated by PHeBIE for blind ptychography problem. Then the following hold.
(1) The sequence $\left\{\left(x^{k}, y^{k}, z^{k}\right)\right\}_{k \in \mathbb{N}}$ has finite length. That is,

$$
\sum_{k=1}^{\infty}\left\|\left(x^{k+1}, y^{k+1}, z^{k+1}\right)-\left(x^{k}, y^{k}, z^{k}\right)\right\|^{2}<\infty
$$

(c) The sequence $\left\{\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\}_{k \in \mathbb{N}}$ converges to point $\left(x^{*}, y^{*}, \mathbf{z}^{*}\right)$ which is a critical point of the function $\Psi$. That is,

$$
0 \in \partial \Psi(x, y, z)=\nabla F\left(x^{*}, y^{*}, \mathbf{z}^{*}\right)+\partial \iota_{X}\left(x^{*}\right)+\partial \iota_{Y}\left(y^{*}\right)+\partial \iota_{Z}\left(\mathbf{z}^{*}\right),
$$

where $\partial(\cdot)$ denotes the limiting Fréchet subdifferential.

For $u$ in the domain of $f$, the limiting Fréchet subdifferential is given by
$\partial f(u):=\left\{v: \exists u^{k} \rightarrow u, f\left(u^{k}\right) \rightarrow f(u), v^{k} \rightarrow v, v^{k} \in \widehat{\partial} f\left(u^{k}\right)\right\}$, where $\widehat{\partial} f(u)=\left\{v: \liminf _{\substack{w \neq u \\ w \rightarrow u}} \frac{f(w)-f(u)-\langle v, w-u\rangle}{\|w-u\|} \geq 0\right\}$.

## PHeBIE: Example

## PHeBIE: Convergence Theorem (cont.)

## Proof Sketch.

The proof has three steps:

## PHeBIE: Convergence Theorem (cont.)

## Proof Sketch.

The proof has three steps:
(1) (Sufficient decrease) Use properties of the algorithm to establish that the sequence $\left\{F\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\}_{k \in \mathbb{N}}$ is decreasing, converges to some $F^{*}>-\infty$, and that

$$
\sum_{k=1}^{\infty}\left\|\left(x^{k+1}, y^{k+1}, \mathbf{z}^{k+1}\right)-\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\|^{2}<\infty
$$

## PHeBIE: Convergence Theorem (cont.)

## Proof Sketch.

The proof has three steps:
(1) (Sufficient decrease) Use properties of the algorithm to establish that the sequence $\left\{F\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\}_{k \in \mathbb{N}}$ is decreasing, converges to some $F^{*}>-\infty$, and that

$$
\sum_{k=1}^{\infty}\left\|\left(x^{k+1}, y^{k+1}, z^{k+1}\right)-\left(x^{k}, y^{k}, z^{k}\right)\right\|^{2}<\infty
$$

(2) (Subdifferential bound) Use properties of the algorithm to show that

$$
\begin{aligned}
& \qquad\left\|w^{k+1}\right\| \leq \kappa\left\|\left(x^{k+1}, y^{k+1}, z^{k+1}\right)-\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\|, \\
& \text { for some } w^{k+1} \in \partial \Psi\left(x^{k+1}, y^{k+1}, z^{k+1}\right) \text { and } \kappa>0 .
\end{aligned}
$$

## PHeBIE: Convergence Theorem (cont.)

## Proof Sketch.

The proof has three steps:
(1) (Sufficient decrease) Use properties of the algorithm to establish that the sequence $\left\{F\left(x^{k}, y^{k}, z^{k}\right)\right\}_{k \in \mathbb{N}}$ is decreasing, converges to some $F^{*}>-\infty$, and that

$$
\sum_{k=1}^{\infty}\left\|\left(x^{k+1}, y^{k+1}, z^{k+1}\right)-\left(x^{k}, y^{k}, z^{k}\right)\right\|^{2}<\infty
$$

(2) (Subdifferential bound) Use properties of the algorithm to show that

$$
\left\|w^{k+1}\right\| \leq \kappa\left\|\left(x^{k+1}, y^{k+1}, \mathbf{z}^{k+1}\right)-\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\|
$$

for some $w^{k+1} \in \partial \Psi\left(x^{k+1}, y^{k+1}, z^{k+1}\right)$ and $\kappa>0$.
(0) To establish convergence of $\left\{\left(x^{k}, y^{k}, \mathbf{z}^{k}\right)\right\}_{k \in \mathbb{N}}$ to a critical point, we appeal to a result of Bolte, Sabach \& Teboulle, 2014. Here the important ingredient is that $\psi$ satisfied the Kurdyka-Łojasiewicz (KL) Property which gives Cauchyness of $\left\{\left(x^{k}, y^{k}, z^{k}\right)\right\}_{k \in \mathbb{N}}$.

## The Kurdyka-Łojasiewicz (KL) Property

Let $f: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ be proper and Isc. For $\eta \in(0,+\infty]$ define

$$
\mathcal{C}_{\eta} \equiv\left\{\phi:[0, \eta) \rightarrow \mathbb{R}_{+}: \varphi(0)=0, \varphi^{\prime}(s)>0 \text { for all } s \in(0, \eta)\right\} .
$$

The function $f$ is said to have the KL property at $\bar{u} \in \operatorname{dom} \partial f$ if there exists a neighbourhood $U$ of $\bar{u}$ and a function $\varphi \in \mathcal{C}_{\eta}$, such that, for all

$$
u \in\{u \in U: f(\bar{u})<f(u)<f(\bar{u})+\eta\},
$$

it holds that

$$
\varphi^{\prime}(f(u)-f(\bar{u})) \operatorname{dist}(0, \partial f(u)) \geq 1
$$

## The Kurdyka-Łojasiewicz (KL) Property

Let $f: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ be proper and Isc. For $\eta \in(0,+\infty]$ define

$$
\mathcal{C}_{\eta} \equiv\left\{\phi:[0, \eta) \rightarrow \mathbb{R}_{+}: \varphi(0)=0, \varphi^{\prime}(s)>0 \text { for all } s \in(0, \eta)\right\}
$$

The function $f$ is said to have the $K L$ property at $\bar{u} \in \operatorname{dom} \partial f$ if there exists a neighbourhood $U$ of $\bar{u}$ and a function $\varphi \in \mathcal{C}_{\eta}$, such that, for all

$$
u \in\{u \in U: f(\bar{u})<f(u)<f(\bar{u})+\eta\},
$$

it holds that

$$
\varphi^{\prime}(f(u)-f(\bar{u})) \operatorname{dist}(0, \partial f(u)) \geq 1
$$

Why is the KL property useful? It holds for many important nonconvex optimisation problems.

In particular, any proper, Isc, semi-algebraic function is satisfies the KL property everywhere in its domain.

## Exploiting Block Structure

The present algorithm:

- Alternatively minimizes w.r.t. three blocks: $X, Y$ and $Z$.
- At each iteration the "step-size" is inversely proportional to a parital Lipschitz constant. For instance,

$$
L_{x}\left(y^{k}, z^{k}\right)=2\left\|\sum_{j=1}^{m} s_{j}^{*}\left(\overline{y^{k}} \odot y^{k}\right)\right\|_{\infty} .
$$

## Exploiting Block Structure

The present algorithm:

- Alternatively minimizes w.r.t. three blocks: $X, Y$ and $Z$.
- At each iteration the "step-size" is inversely proportional to a parital Lipschitz constant. For instance,

$$
L_{x}\left(y^{k}, \mathbf{z}^{k}\right)=2\left\|\sum_{j=1}^{m} S_{j}^{*}\left(\overline{y^{k}} \odot y^{k}\right)\right\|_{\infty}
$$

When $X$ or $Y$ has separable structure, they can be decomposed as

$$
X \equiv X_{1} \times X_{2} \times \cdots \times X_{N}, \quad Y \equiv Y_{1} \times Y_{2} \times \cdots \times Y_{M}
$$

- Algorithm variant: alternatively minimizes w.r.t. $(N+M+1)$-blocks.
- The $j$ th "sub-block", $X_{j}$, has partial Lipschitz constant

$$
2\left\|\left.\left(\sum_{j=1}^{m} S_{j}^{*}\left(\overline{y^{k}} \odot y^{k}\right)\right)\right|_{x_{j}}\right\|_{\infty}
$$

$\star$ More sub-blocks $\rightarrow$ small sub-blocks $\rightarrow$ small constant $\rightarrow$ larger step-size.

- Sub-blocks can be updated sequentially or in parallel. In both cases, an analogous convergence theorem holds (see the paper for details).


## Explaining Maiden \& Rodenburg

In our framework, we can interpret Maiden \& Rodeburg's algorithm as alternating minimisation w.r.t. the blocks (in order)

$$
X_{1}, Y_{1}, Z, X_{2}, Y_{2}, Z, X_{3}, Y_{3}, Z, \ldots, X_{1}, Y_{1}, Z, \ldots
$$

where sub-blocks $X_{j}$ and $Y_{j}$ correspond to restrictions related to the support of the $j$ th exit wave.

## Explaining Maiden \& Rodenburg

In our framework, we can interpret Maiden \& Rodeburg's algorithm as alternating minimisation w.r.t. the blocks (in order)

$$
X_{1}, Y_{1}, Z, X_{2}, Y_{2}, Z, X_{3}, Y_{3}, Z, \ldots, X_{1}, Y_{1}, Z, \ldots
$$

where sub-blocks $X_{j}$ and $Y_{j}$ correspond to restrictions related to the support of the $j$ th exit wave.

Moreover, Maiden \& Rodenburg's update rules:
$o_{j+1}(\mathbf{r})=O_{j}(\mathbf{r})+\alpha \frac{P_{j}^{*}\left(\mathbf{r}-\mathbf{R}_{s(j)}\right)}{\left|P_{j}\left(\mathbf{r}-\mathbf{R}_{s(j)}\right)\right|_{\text {max }}^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right) . \quad P_{j+1}(\mathbf{r})=P_{j}(\mathbf{r})+\beta \frac{O_{j}^{*}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)}{\left|O_{j}\left(\mathbf{r}+\mathbf{R}_{s(j)}\right)\right|_{\text {max }}^{2}}\left(\psi_{j}^{\prime}(\mathbf{r})-\psi_{j}(\mathbf{r})\right)$.
are what is obtain by by taking $X=Y=\mathbb{C}^{m \times m}$. Note that the "normalisations" are precisely the partial Lipschitz constants!

## Explaining Thibault et al.

If it were not a difference-map algorithm, Thibault et al. could be interpreted as the two block alternating proximal linearisation minimisation of:

Initialization. Choose $\left(x^{0}, y^{0}, z^{0}\right) \in X \times Y \times Z$.
General Step. $(k=0,1, \ldots)$

1. Select

$$
\left(x^{k+1}, y^{k+1}\right) \in \underset{(x, y) \in X \times Y}{\arg \min } F\left(x, y, z^{k}\right)
$$

2. Select

$$
z^{k+1} \in \underset{z \in Z}{\arg \min } F\left(x^{k+1}, y^{k+1}, z\right)
$$

However Step. 1 is not so easy to solve:

$$
\begin{align*}
& \hat{O}(\mathbf{r})=\frac{\sum_{j} \hat{P}^{*}\left(\mathbf{r}-\mathbf{r}_{j}\right) \psi_{j}(\mathbf{r})}{\left.\sum_{j} \hat{P}\left(\mathbf{P}-\mathbf{r}_{j}\right)\right|^{2}},  \tag{7}\\
& \hat{P}(\mathbf{r})=\frac{\sum_{j} \hat{O}^{*}\left(\mathbf{r}+\mathbf{r}_{j}\right) \psi_{j}\left(\mathbf{r}+\mathbf{r}_{j}\right)}{\sum_{j}\left|\hat{O}\left(\mathbf{r}+\mathbf{r}_{j}\right)\right|^{2}} . \tag{8}
\end{align*}
$$

In the event the probe $\hat{P}$ is already known, the overlap projection is given by (6), where $\hat{O}$ is computed with Eq. (7). If $\hat{P}$ also needs to be retrieved, both Eqs. (7) and (8) need to be simultaneously solved. While the system cannot be decoupled analytically, applying the two equations in turns for a few iterations was observed to be an efficient procedure to find the minimum. Within the reconstruction scheme, initial guesses for $\hat{P}$ and $\hat{O}$ are readilv available from the previous iteration-adart

## Explaining Thibault et al.

If it were not a difference-map algorithm, Thibault et al. could be interpreted as the two block alternating proximal linearisation minimisation of:

Initialization. Choose $\left(x^{0}, y^{0}, z^{0}\right) \in X \times Y \times Z$.
General Step. $(k=0,1, \ldots)$

1. Select

$$
\left(x^{k+1}, y^{k+1}\right) \in \underset{(x, y) \in X \times Y}{\arg \min } F\left(x, y, z^{k}\right)
$$

2. Select

$$
z^{k+1} \in \underset{z \in Z}{\arg \min } F\left(x^{k+1}, y^{k+1}, z\right)
$$

So the actual computation is the following heuristic approximation to 1. :
Input. $\left(\hat{x}^{0}, \hat{y}^{0}\right):=\left(x^{k}, y^{k}\right) \in X \times Y, \mathbf{z}^{k}$, and $L \in \mathbb{N}$.
General Step. $(I=0,1, \ldots,(L-1))$
1a. Select

$$
\hat{x}^{\prime+1} \in \underset{x \in X}{\arg \min } F\left(x, \hat{y}^{\prime}, \mathbf{z}^{k}\right),
$$

1b. Select

$$
\hat{y}^{\prime+1} \in \underset{y \in Y}{\arg \min } F\left(\hat{x}^{\prime+1}, y, \mathbf{z}^{k}\right)
$$

In our framework, this is alternating minimisation w.r.t. the blocks (in order)

$$
X, Y, X, Y, \ldots, X, Y, Z, X, Y, X, Y, \ldots, X, Y, Z, \ldots
$$

## Concluding Remarks and Ongoing Work

In summary:

- We presented a ptychography algorithm with a clear mathematical framework.
- Under practically verifiable assumption, it is provably convergent to critical points of a function $\Psi$.
- The flexibility of the framework allows interpretation of current state-of-the-art ptychography algorithms.
Ongoing and future work:
- Is there a useful characterisation of the critical points of of $\Psi$ ?
- Can the algorithm structure be exploited on specific architectures?

For further details see:
Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging with R. Hesse, D.R. Luke and S. Sabach. SIAM J. on Imaging Sciences, 8(1):426-457 (2015).

