Symbolic Convex Analysis
Matthew K. Tam
Based on joint work with Florian Lauster and D. Russell Luke

Institut fiir Numerische und Angewandte Mathematik
Georg-August-Universitdt Gottingen

sfat 7731

CARMA Seminar
May 11, 2017

Computer Algebra Systems

The focus of this talk is the manipulation of objects from convex analysis
within a Computer Algebra System (CAS). Any CAS will do, but | prefer

Manlesoft

Mathematics » Modeling » Simulation

@ 1960s: Beginning of computer algebra (Schoonschip by Veltman).
@ Today symbolic differentiation/integration are well-developed.

© Why symbolic computation?

o Removes error prone steps in tedious (but elementary) calculations.
o Facilitates discovery of useful machinery not known to the user.
o Makes tools easily accessible to a non-specialist or student

(e.g., Wolfram Alpha).

Computer Algebra Systems

Mathematical theory underpins good symbolic computation approaches.

@ It is always possible to work in ad-hoc manner, however an approach
which systematic and theoretically justified is needed to develop
robust and reliable software.

© When working symbolically, computational complexity is often bad
but the computations are rigorous and exact (when done properly).

© Not a replacement: Fall-back to numerical approaches as needed.

Relatively little work has been done in the way of utlising symbolic
computation in the convex analysis world. This will be our focus today.

Convex Analysis in 30 Seconds

Three-second overview: Study of real extended-valued, convex but
not necessarily differentiable functions (e.g., f(x) = |x]| or ||x]|1)-

Convex Analysis in 30 Seconds

Three-second overview: Study of real extended-valued, convex but
not necessarily differentiable functions (e.g., f(x) = |x]| or ||x]|1)-

Useful for devising algorithms to solve minimisation problems:

inf {£(x) + g(Ax)}. &)

Convex Analysis in 30 Seconds

Three-second overview: Study of real extended-valued, convex but
not necessarily differentiable functions (e.g., f(x) = |x| or ||x||1)-

Useful for devising algorithms to solve minimisation problems:
inf {f(x) + g(Ax)}- (1)
Constrained optimisation is just a special case:
X'ch f(x) = X|enﬂ1;n{f(x) +ie(x)}

where 1¢ denotes the indicator function of the set C C R” defined by

0 xeC
telx) = {+oo x ¢ C.

Convex Analysis in 30 Seconds

p = inf {f(x) +g(Ax)}. (1)

Two results of fundamental importance are:
© First-order optimality: If f, g are convex, then under mild conditions

x € R" solves (1) < 0 € 9f(x) + dg(x),

where “Of"" is the so-called subdifferential of a function f.

Convex Analysis in 30 Seconds

p = inf {f(x) +g(Ax)}. (1)

Two results of fundamental importance are:
© First-order optimality: If f, g are convex, then under mild conditions

x € R" solves (1) < 0 € 9f(x) + dg(x),

where “Of"" is the so-called subdifferential of a function f.

@ Fenchal duality: The dual to (1) is maximisation problem

d:= seuﬂsm{—f*(AT}/) -g (-}

where f* is the Fenchel conjugate of f. Then p > d and, moreover,
equality holds when a constraint qualification is satisfied.

Convex Analysis on a Computer?

Let f : R" — (—o0, +0o0] be an extended real-valued function. Two of
the workhorses of convex analysis are:

@ The Fenchel conjugate of f given by

f(y) == sup {(x,y) — f(x))}.

xERN

@ The subdifferential of f given by
OF(R) = {6 € R": (g, x %) < F(x) — F(X)},

whenever X € dom f, and equal to () otherwise.

Convex Analysis on a Computer?

Let f : R" — (—o0, +0o0] be an extended real-valued function. Two of
the workhorses of convex analysis are:

@ The Fenchel conjugate of f given by

f(y) == sup {(x,y) — f(x))}.

xERN

@ The subdifferential of f given by
OF(X) = {$ €R™: (g,x — %) < F(x) — F(R)}.

whenever X € dom f, and equal to () otherwise.

How can we compute these objects? What does compute mean?

Numerical Fenchel Conjugatation

Let £ : R — (—o00, 4+00] be proper, Isc and convex. One approach to
numerically compute the conjugate function follows. Recall that

*(y) :=sup{{x,y) — f(x) : x € R}.

Numerical Fenchel Conjugatation

Let £ : R — (—o00, 4+00] be proper, Isc and convex. One approach to
numerically compute the conjugate function follows. Recall that

*(y) :=sup{{x,y) — f(x) : x € R}.

Choose sets X := {x1,...,x,} CRand Y :={y1,...,¥m} CR. Then

f*(yi) = sup{(x,yi) — f(x) : x € X}
~ sup{<va)/i> - f(XJ) j=1...,n}

Numerical Fenchel Conjugatation

Let £ : R — (—o00, 4+00] be proper, Isc and convex. One approach to
numerically compute the conjugate function follows. Recall that

*(y) :=sup{{x,y) — f(x) : x € R}.

Choose sets X := {x1,...,x,} CRand Y :={y1,...,¥m} CR. Then

f*(yi) = sup{(x,yi) — f(x) : x € X}
~ sup{<va)/i> - f(XJ) j=1...,n}

What is (theoretically) possible with this approach:
@ Approximation converges pointwise to f* as n, m — +o0.
@ Brute force complexity is O(nm).
o FFT-type approaches have complexity O((n + m)log(n+ m)).
@ Lucet's Linear-time Lengendre Transform has complexity O(n+ m).

Symbolic Computation: A Quick Primer

Consider the function
f(x) := xlog(x).
Here is an example of some basic symbolic operators (in Maple):
@ Define a function: f:= x->x*log(x);
Take a limit (even if f not defined): limit (f(x),x=0);
Differentiate an expression: diff (f(x),x);

Solve equations: solve (f (x)=y,x);

Pause to consider how these might be implemented — it's non-trival!

Symbolic Computation: A Quick Primer

Consider the function
f(x) := xlog(x).
Here is an example of some basic symbolic operators (in Maple):
@ Define a function: f:= x->x*log(x);
o Take a limit (even if f not defined): limit (f(x),x=0);
o Differentiate an expression: diff (f(x),x);

@ Solve equations: solve(f (x)=y,x);

Pause to consider how these might be implemented — it's non-trival!

Just to illustrate that much more is possible, here's another example:

BI:=n->Int(Product(sin(x/(2xk+1))/(x/(2%k+1)),k=0..n),x=0..infinity);
for n from 0 to 7 do
BI(n) = value(BI(n));

end do;

The Symbolic Approach to Fenchel Conjugation

Let f : R" — (—o00, +0o0] be proper, Isc and convex. The basic idea for
symbolic computation of the Fenchel conjugate is as follows:

i i F.-Y. ineq.
. subdiff. of invert of* q o

The Symbolic Approach to Fenchel Conjugation

Let f : R" — (—o00, +0o0] be proper, Isc and convex. The basic idea for
symbolic computation of the Fenchel conjugate is as follows:

i i F.-Y. ineq.
. subdiff. of invert of* q o

A consequence of the Fenchel-Young inequality is that

(y) = (x,y) — f(x) whenever x € 9f(y).

@ Inversion of Of can be problematic (Think quintic equations).
@ Data-structures which represents f must be able to represent *.

@ The same representativity requirement applies to Of and Of*.

A Suitable Family of Convex Functions

Definition (F-functions)

For a set of finitely many points A = {a;}7; satisfying

Pp=—00<ag< - -<ap-1<ap=-+0o0, (2)

we say a function f : R — (—o0, +00] belongs to F(A) if:
(a) fis Isc and convex;
(b) f is continuous on its effective domain; and
(c) the restriction of f to (a;,a;11) is either:
(i) affine,
(ii) differentiable and strictly convex, or
(iii) identically equal to +oo.
The class F is the union of F(A) over all finite sets A satisfying (2)

Studied by Bauschke & von Mohrenschildt, and Borwein & Hamilton.

The “Infamous" Absolute Value

Consider the function f(x) = |x| which is clearly contained in F.

The “Infamous" Absolute Value

Consider the function f(x) = |x| which is clearly contained in F.

Let’s take a look at how we compute with this symbolically. Write:

X x>0,
flx)=¢0 x=0,
—x x<0.
We have:
@ 39 = —00,a; =0 and a; = +00.

o f is affine on (ag, a1) and (a1, a2).

Let's compute its subdifferential.

An entropy example

Consider the function g(x) = xlog x on R with g(0) := 0.

An entropy example

Consider the function g(x) = xlog x on R with g(0) := 0.

Let's take a look at how we compute with this symbolically. Write:

xlogx x>0,

g(x) =40 x =0,
+00 x < 0.
We have:
@ ag = —00,a; = 0 and a, = +o0.

e g is differentiable and strictly convex on (ay, as).

@ (ao, a1) is outside the domain of g.

Let's compute its subdifferential.

A nonstandard proof of convexity

It is worth keeping in mind that the ‘obvious’ human approach is not
always the best symbolic approach. For instance, the following fact gives
a pathway to proving convexity.

Fact (Fenchel biconjugation)

For any function f : R” — (—o0, +00], we have
f is Isc and convex <= f =f"".

In fact, the operation of Fenchel conjugation induces an order-inverting
bijection between proper Isc convex functions.

Claim. The functions f = |- | and g = x log x are proper, Isc and convex.
Proof. Using Maple, check that the biconjugates equal the function:

f-Conj(Conj(£f,y),x);
g-Conj(Conj(g,y),x);

Monotone Operators
Let T:R" = R" be a set-valued map.

@ T is monotone if

(x,xT) € gph T}

= (x—y,x"—y")>o.
(v,y")egph T

@ T is cyclical monotone if, for every n > 2, it holds that

(x1,%7) €gph T

N = Z<Xi+1 —xi, %) > 0.
(Xnyx7) €gph T i=1

Xn+1 = X1

@ T is maximal (cyclic) monotone if:

T (cyclic) monotone and gph T C gph T implies T = T.

Monotone Operators
Let T:R" = R" be a set-valued map.

@ T is monotone if

(x,xT) € gph T}

= (x—y,x"—y")>o.
(v,y")egph T

@ T is cyclical monotone if, for every n > 2, it holds that

(x1,%7) €gph T

N = Z<Xi+1 —xi, %) > 0.
(Xnyx7) €gph T i=1

Xn+1 = X1

@ T is maximal (cyclic) monotone if:

T (cyclic) monotone and gph T C gph T implies T = T.

° ’ If £ is proper, Isc and convex then Of is maximal cyclic monotone.

A Suitable Family of Monotone Operators

We propose the follow family of monotone operators.

Definition (7-operators)
For a set of finitely many points B = {b;}/_, satisfying

bo:—C>O<b1<"~<b/,1<b/:—|'OO7 (3)

we say a set-valued operator T : R = R belongs to T(B) if there exists a
maximal monotone extension T of T such that the restriction 7 to each
interval (b;, bj11) is either

(i) single-valued and constant;

(i) single-valued, continuous and strictly monotone; or

(iii) identically equal to the empty-set.
The class T is the union of 7(B) over all finite sets B satisfying (3).

Important Properties of T-operators

All the most important closure properties for the class hold.

Proposition (Properties of T-operators)
The following assertions hold.

(@) f TeT and A >0 then AT € 7.

(b) f Ty, T, €T then 1+ T, €T.

(c) ¥ T€Tthen T 1eT.

(d) f TeTand A >0then (I +AT) e T.
(e) f T, T €T then (T, '+ T,)L eT.

Important Properties of T-operators

All the most important closure properties for the class hold.

Proposition (Properties of T-operators)

The following assertions hold.

(@) f TeT and A >0 then AT € 7.

(b) f Ty, T, €T then 1+ T, €T.

(c) ¥ T€Tthen T 1eT.

(d) f TeTand A >0then (I +AT) e T.
(e) f T, T €T then (T, '+ T,)L eT.

Property (d) states that 7T-operators are closed under taking resolvents.
In particular, if T = Of then the proximity operator of f is also in 7.

Connections Between F and T

We summarizes the connection between F-functions and T-operators.

Theorem (“7 = 0F")

If f € F is proper then Of is maximal monotone and belongs to T .
Conversely, if T € T is maximal monotone then there exists a proper, Isc,
convex function f such that T = Of and, moreover, any such function
belongs to F.

Connections Between F and T

We summarizes the connection between F-functions and T-operators.

Theorem (“7 = 0F")

If f € F is proper then Of is maximal monotone and belongs to T .
Conversely, if T € T is maximal monotone then there exists a proper, Isc,
convex function f such that T = Of and, moreover, any such function
belongs to F.

Theorem (“F* = F")
If f € F is a proper function then f* € F.

The key step of the proof is: if Of € T then (0f)~! = 0f* € T.

Closure of F under Fenchel Conjugation

Assumption (c) of the F-function definition is essential for closure under
Fenchel conjugation. Recall:

Definition (Part (c) of F-functions)

(c) the restriction of f to (a;,a;11) is either:
(i) affine,
(i) differentiable and strictly convex, or
(iii) identically equal to +oo.

In its absence, the closure can fail spectacularly.

Example (Lauster)

There exists a convex f : R — R which is infinitely differentiable on
R\ {0} such that its Fenchel conjugate, *, is not differentiable at
infinitely many points in its domain. In particular, f* & F.

Examples and lllustrations

I will now give three example illustrations of the framework. Namely,
© Explicit Formula for Proximity Operators
© Recovery of Penalty Functions

© Superexpectations, Superdistributions and Superquantiles

http://vaopt.math.uni-goettingen.de/software.php
https://gitlab.gwdg.de/mtam/SymCA/tree/master

Examples and lllustrations

I will now give three example illustrations of the framework. Namely,
© Explicit Formula for Proximity Operators
© Recovery of Penalty Functions

© Superexpectations, Superdistributions and Superquantiles

The examples are programmed in Maple and use the SCAT package where
appropriate. The code can be found online at:

http://vaopt.math.uni-goettingen.de/software.php
Or accessed through GWDG's GitLab repository:

https://gitlab.gwdg.de/mtam/SymCA/

http://vaopt.math.uni-goettingen.de/software.php
https://gitlab.gwdg.de/mtam/SymCA/tree/master

1. Explicit Formula for Proximity Operators

The proximity operator of a function f : R” — (—o0, +0o0] is given by

. 1
prox; := arg min {f(y) + §|| . —y||2})
y€ER?

1. Explicit Formula for Proximity Operators

The proximity operator of a function f : R” — (—o0, +00] is given by

. 1
prox; := arg min {f(y) + §|| . —y||2})
y€eRn

When f is proper, Isc and convex, one has
prox; = (I + O0f) L.

That is, the proximity operator is the resolvent of the subdifferential.

1. Explicit Formula for Proximity Operators

The proximity operator of a function f : R” — (—o0, +00] is given by

. 1

prox; := arg min {f(y) + §|| . —y||2})
y€eRn

When f is proper, Isc and convex, one has

prox; = (I + O0f) L.

That is, the proximity operator is the resolvent of the subdifferential.

The following approach is thus theoretically justified:

fer 2 oreT ™Y (Lo teT.

1. Explicit Formula for Proximity Operators

with(SCAT): # load the SCAT package
f := convert(abs(x), PWF); # define f and convert to PWF

format
—x x<0
f:=<0 x=0
X x>0

sdf := SubDiff(f): # compute the subdiff of f
Assume (lambda > 0):

prox[’f’]~lambda = Invert(simplify(x+lambda*sdf),y); # prox f

{A+y} y<-=X

{0} y=-X
prox; = { {0} (=X <y) and (y <)
{o} y=2x

{-A+y} A<y

1. Explicit Formula for Proximity Operators

with(SCAT): # load the SCAT package
Assume(a < b): # assume that the interval is proper

f := convert(piecewise(a<=x and x<=b, 0, infinity), PWF, x);
© x<a
0 x=a
f:i=¢0 (a<x) and (x<b)
0 x=b
© b<x

sdf := SubDiff(f): # compute the subdiff of f
P[[a, b]] = Invert(simplify(x+sdf),y); # proj onto [a,Db]

{a} x<a
{a} x=a
Pan = q{y} (a<y) and (y <b)
{b} x=0b
{b} b<x

2. Recovery of Penalty Functions

Given a monotone operator T : R = R, we consider the problem of
finding a so-called penalty function f : R — (—o0,4+00]. That is, a
function f who subdifferential can be identified with T in the sense that

gph T C gph(prox).
Or equivalently, such that for all x € R,
T(x) C proxs(x).

The problem was studied by Bayram (2015) without utilising symbolic
computational tools.

2. Recovery of Penalty Functions

Proposition (Recovery of penalty functions)

Let T :R” = R" be a maximal cyclical monotone operator. There exists
a proper, Isc function f such that f + 1| - ||? convex and T = prox;.
Furthermore, if T € F then there is an f such that f + 3| - ||> € F.

2. Recovery of Penalty Functions

Proposition (Recovery of penalty functions)

Let T :R” = R" be a maximal cyclical monotone operator. There exists
a proper, Isc function f such that f + 1| - ||? convex and T = prox;.
Furthermore, if T € F then there is an f such that f + 3| - ||> € F.

Proof sketch. Take f = h*(y) — 3||y||>. This is justified because
T(x) = 9h(x) = (0h") " (x) = {y € R" : x € Oh"(y)}

= arygeglin{h*(}/) — (¥}

. N 1 1
—argmin{ (W0) = 3I017) + 3k ¥1°}
yeRn

The following approach is thus theoretically justified:

(R

Ni=

TeT ™8 peFr 2% pcp

penalty function

2. Recovery of Penalty Functions

with(SCAT): # load the SCAT package
Assume (alpha > 0):
H := SD([x, -alpha, O, x, O, alpha, 0, x, x], [x], x::real);

{x} x < —«

{0,x} x=—a
H:= ¢ {0} (—a < x) and (x < @)
{0,x} x=a«

{x} x <«

Conjh := Conj(Integ(H),y):
f = factor(simplify(Conjh-1/2%y~2));

0 y< —«a

Lla-y)aty) y=-«

Ha+y)? (—a<y) and (y <0)
f= —%az—%yz y=0

—(a—y)? (0<y) and (y <)

La-y)a+y) y=a

0 a<y

3. Superexpectations, Superdistributions and Superquantiles

The following example is from Rockafellar—-Royset, 2013.

Example (exponential distributions). Let X be exponentially distributed with parameter
A > 0. Then the distribution function is Fx(x) = 1 — exp(—Ax), the superexpectation
function is
x4+ (1/X)exp(—Ax) for x >0,
EX(X):{ (1/A) exp(—Ax) >

1/X for x < 0,

and the conjugate superexpection function is Ex(p) = (1/A)(p — 1)(1 — log(1 — p)) for
p € [0,1). Quantile and superquantiles are thus given on (0, 1) by

Qx(p) = —(1/N)log(1 — p). Qx(p) = (1/N)[1 — log(1 — p)].

Starting with the distribution function Fx, we can symbolic compute the
various objects. In particular, the superexpection function

Ex(x) := E(max{x, X}),

is suited for symbolic computation not through its definition but rather
by integration of Fx.

Rockafellar & Royset

Theorem 1 (characterization of superexpectations). The superexpectation function Ex for
a random variable X having E[|X|] < oc is a finite convex function on (—oo,00) which
corresponds subdifferentially to the monotone relation I'x and the distribution function Fy

through
T'x = gph0FEx, Fx(r) = E¥%(x). (3.14)
It is nondecreasing with
Ex(z)—x >0, mlggo[EX(sv) —z]=0, IE{% Ex(z) = E[X] (3.15)

and has the additional convexity property that
Ex(z) <(1—MNEx,(x) + AEx,(x) when X = (1 —MN)Xo+AX; with 0 <A< 1. (3.16)
On the other hand, any convex function f on (—oo,co0) with the properties that

flx)—z>0, Ii/m [f(z)—=2] =0, {i‘m f(z) = a finite value, (3.17)

is Ex for a random variable X having E[|X|] < oco.

Rockafellar & Royset

Theorem 1 (characterization of superexpectations). The superexpectation function Ex for
a random variable X having E[|X|] < oo is a finite convex function on (—oo,00) which
corresponds subdifferentially to the monotone relation I'x and the distribution function Fy

through
T'x = gph0Fx, Fx(z) = B (z). (3.14)
It is nondecreasing with
Ex(z)—x >0, Jim [Ex () — 2] = 0, Jim Ex(x) = E[X] (3.15)
and has the additional convexity property that
Ex(z) <(1—MNEx,(x) + AEx,(x) when X = (1 —MN)Xo+AX; with 0 <A< 1. (3.16)
On the other hand, any convex function f on (—oo,co0) with the properties that

flx)—z>0, Ii/m [f(z) —a] =0, {i‘m f(z) = a finite value, (3.17)

is Ex for a random variable X having E[|X|] < oc.

3. Rockafellar & Royset (cont.)

with(SCAT) :
F := 1-exp(-lambda*x): # distribution fn of X
Q := solve(F=p,x); # quantile fn of X

_ In(1-p)
Qi=——=75—

superquantile fn of X
superQ := factor(1/(1-p)*int(subs(p=t,Q),t=p..1));

superQ 1= —n1=p) =1
A
Assume (lambda>0) :
F := convert(piecewise(x >= 0,F), SD,x);
{0} x<0
E:= (¢ {0} x=0

{1-e™} 0<x

3. Rockafellar & Royset (cont.)

compute the superexpection function of F
EO := Integ(F,x):

c0 := Eval(simplify(EO-x), x = infinity):
E := simplify(EO - c0);

[P>l=

> >

x4 e
A

conjE := conjE(E,p,x); # the conjugate of the

(oo}

1
DY
conjE := (=1+p)(In(L — p) — 1)

A
0

0 < x

superexpectation

Conclusions and Outlook

@ The classes of F-functions and 7 -operators are well-suited to
manipulation within a CAS and encompasses important examples.

@ Robustness is a consequence of theoretical underpinnings.

o Easily accessible to non-specialists and students.

@ Further work: Extensions to higher dimensions via recursion.
e.g., Define T' := 7 and say T : R" = R" is a 7 "-operator if

(x2, X3, ..y Xn) = T(t,x2,X3,...,Xn)

is a 7" l-operator, for each fixed t € R.

[3 F. Lauster, D.R. Luke and M.K. Tam: Symbolic computation with
monotone operators, arXiv:1703.05946 (March 2017).

Maple worksheet for examples given in this talk online at:
http://vaopt.math.uni-goettingen.de

http://arxiv.org/abs/1703.05946
http://vaopt.math.uni-goettingen.de

