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Computer Algebra Systems

The focus of this talk is the manipulation of objects from convex analysis
within a Computer Algebra System (CAS). Any CAS will do, but I prefer

1 1960s: Beginning of computer algebra (Schoonschip by Veltman).
2 Today symbolic differentiation/integration are well-developed.
3 Why symbolic computation?

Removes error prone steps in tedious (but elementary) calculations.
Facilitates discovery of useful machinery not known to the user.
Makes tools easily accessible to a non-specialist or student
(e.g., Wolfram Alpha).
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Computer Algebra Systems

Mathematical theory underpins good symbolic computation approaches.
1 It is always possible to work in ad-hoc manner, however an approach

which systematic and theoretically justified is needed to develop
robust and reliable software.

2 When working symbolically, computational complexity is often bad
but the computations are rigorous and exact (when done properly).

3 Not a replacement: Fall-back to numerical approaches as needed.

Relatively little work has been done in the way of utlising symbolic
computation in the convex analysis world. This will be our focus today.
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Convex Analysis in 30 Seconds

Three-second overview: Study of real extended-valued, convex but
not necessarily differentiable functions (e.g., f (x) = |x | or ‖x‖1).

Useful for devising algorithms to solve minimisation problems:

inf
x∈Rn
{f (x) + g(Ax)}. (1)

Constrained optimisation is just a special case:

inf
x∈C

f (x) = inf
x∈Rn
{f (x) + ιC (x)},

where ιC denotes the indicator function of the set C ⊆ Rn defined by

ιC (x) =

{
0 x ∈ C

+∞ x 6∈ C .
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Convex Analysis in 30 Seconds

p := inf
x∈Rn
{f (x) + g(Ax)}. (1)

Two results of fundamental importance are:
1 First-order optimality: If f , g are convex, then under mild conditions

x ∈ Rn solves (1) ⇐⇒ 0 ∈ ∂f (x) + ∂g(x),

where “∂f ” is the so-called subdifferential of a function f .
2 Fenchal duality: The dual to (1) is maximisation problem

d := sup
y∈Rm

{−f ∗(Aᵀy)− g∗(−y)},

where f ∗ is the Fenchel conjugate of f . Then p ≥ d and, moreover,
equality holds when a constraint qualification is satisfied.
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Convex Analysis on a Computer?

Let f : Rn → (−∞,+∞] be an extended real-valued function. Two of
the workhorses of convex analysis are:

The Fenchel conjugate of f given by

f ∗(y) := sup
x∈Rn

{〈x , y〉 − f (x)〉}.

The subdifferential of f given by

∂f (x) := {φ ∈ Rn : 〈φ, x − x〉 ≤ f (x)− f (x)},

whenever x ∈ dom f , and equal to ∅ otherwise.

How can we compute these objects? What does compute mean?
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Numerical Fenchel Conjugatation
Let f : R→ (−∞,+∞] be proper, lsc and convex. One approach to
numerically compute the conjugate function follows. Recall that

f ∗(y) := sup{〈x , y〉 − f (x) : x ∈ R}.

Choose sets X := {x1, . . . , xn} ⊆ R and Y := {y1, . . . , ym} ⊆ R. Then

f ∗(yi ) = sup{〈x , yi 〉 − f (x) : x ∈ X}
≈ sup{〈xj , yi 〉 − f (xj) : j = 1, . . . , n}.

What is (theoretically) possible with this approach:
Approximation converges pointwise to f ∗ as n,m→ +∞.
Brute force complexity is O(nm).
FFT-type approaches have complexity O((n +m) log(n +m)).
Lucet’s Linear-time Lengendre Transform has complexity O(n +m).
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Symbolic Computation: A Quick Primer

Consider the function
f (x) := x log(x).

Here is an example of some basic symbolic operators (in Maple):
Define a function: f:= x->x*log(x);

Take a limit (even if f not defined): limit(f(x),x=0);
Differentiate an expression: diff(f(x),x);
Solve equations: solve(f(x)=y,x);

Pause to consider how these might be implemented – it’s non-trival!

Just to illustrate that much more is possible, here’s another example:

BI:=n->Int(Product(sin(x/(2*k+1))/(x/(2*k+1)),k=0..n),x=0..infinity);
for n from 0 to 7 do

BI(n) = value(BI(n));
end do;
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The Symbolic Approach to Fenchel Conjugation

Let f : Rn → (−∞,+∞] be proper, lsc and convex. The basic idea for
symbolic computation of the Fenchel conjugate is as follows:

f ∂f ∂f ∗ f ∗
subdiff. invert F.-Y. ineq.

A consequence of the Fenchel–Young inequality is that

f ∗(y) = 〈x , y〉 − f (x) whenever x ∈ ∂f ∗(y).

Inversion of ∂f can be problematic (Think quintic equations).
Data-structures which represents f must be able to represent f ∗.
The same representativity requirement applies to ∂f and ∂f ∗.
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A Suitable Family of Convex Functions

Definition (F -functions)
For a set of finitely many points A = {ai}mi=1 satisfying

a0 = −∞ < a1 < · · · < am−1 < am = +∞, (2)

we say a function f : R→ (−∞,+∞] belongs to F(A) if:

(a) f is lsc and convex;
(b) f is continuous on its effective domain; and
(c) the restriction of f to (ai , ai+1) is either:

(i) affine,
(ii) differentiable and strictly convex, or
(iii) identically equal to +∞.

The class F is the union of F(A) over all finite sets A satisfying (2)

Studied by Bauschke & von Mohrenschildt, and Borwein & Hamilton.
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The “Infamous" Absolute Value

Consider the function f (x) = |x | which is clearly contained in F .

Let’s take a look at how we compute with this symbolically. Write:

f (x) =


x x > 0,
0 x = 0,
−x x < 0.

We have:
a0 = −∞, a1 = 0 and a2 = +∞.
f is affine on (a0, a1) and (a1, a2).

Let’s compute its subdifferential.
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An entropy example

Consider the function g(x) = x log x on R+ with g(0) := 0.

Let’s take a look at how we compute with this symbolically. Write:

g(x) =


x log x x > 0,
0 x = 0,
+∞ x < 0.

We have:
a0 = −∞, a1 = 0 and a2 = +∞.
g is differentiable and strictly convex on (a1, a2).
(a0, a1) is outside the domain of g .

Let’s compute its subdifferential.
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A nonstandard proof of convexity

It is worth keeping in mind that the ‘obvious’ human approach is not
always the best symbolic approach. For instance, the following fact gives
a pathway to proving convexity.

Fact (Fenchel biconjugation)
For any function f : Rn → (−∞,+∞], we have

f is lsc and convex ⇐⇒ f = f ∗∗.

In fact, the operation of Fenchel conjugation induces an order-inverting
bijection between proper lsc convex functions.

Claim. The functions f = | · | and g = x log x are proper, lsc and convex.

Proof. Using Maple, check that the biconjugates equal the function:

f-Conj(Conj(f,y),x);
g-Conj(Conj(g,y),x);
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Monotone Operators
Let T : Rn ⇒ Rn be a set-valued map.

T is monotone if

(x , x+) ∈ gphT

(y , y+) ∈ gphT

}
=⇒ 〈x − y , x+ − y+〉 ≥ 0.

T is cyclical monotone if, for every n ≥ 2, it holds that

(x1, x
+
1 ) ∈ gphT

...

(xn, x
+
n ) ∈ gphT

xn+1 = x1


=⇒

n∑
i=1

〈xi+1 − xi , x
+
i 〉 ≥ 0.

T is maximal (cyclic) monotone if:

T̄ (cyclic) monotone and gphT ⊆ gph T̄ implies T = T̄ .

If f is proper, lsc and convex then ∂f is maximal cyclic monotone.
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A Suitable Family of Monotone Operators

We propose the follow family of monotone operators.

Definition (T -operators)
For a set of finitely many points B = {bi}li=0 satisfying

b0 = −∞ < b1 < · · · < bl−1 < bl = +∞, (3)

we say a set-valued operator T : R ⇒ R belongs to T (B) if there exists a
maximal monotone extension T̃ of T such that the restriction T to each
interval (bi , bi+1) is either
(i) single-valued and constant;
(ii) single-valued, continuous and strictly monotone; or
(iii) identically equal to the empty-set.
The class T is the union of T (B) over all finite sets B satisfying (3).
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Important Properties of T -operators

All the most important closure properties for the class hold.

Proposition (Properties of T -operators)
The following assertions hold.

(a) If T ∈ T and λ ≥ 0 then λT ∈ T .

(b) If T1,T2 ∈ T then T1 + T2 ∈ T .

(c) If T ∈ T then T−1 ∈ T .

(d) If T ∈ T and λ > 0 then (I + λT )−1 ∈ T .

(e) If T1,T2 ∈ T then (T−1
1 + T−1

2 )−1 ∈ T .

Property (d) states that T -operators are closed under taking resolvents.
In particular, if T = ∂f then the proximity operator of f is also in T .
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Connections Between F and T

We summarizes the connection between F-functions and T -operators.

Theorem (“T = ∂F ”)

If f ∈ F is proper then ∂f is maximal monotone and belongs to T .
Conversely, if T ∈ T is maximal monotone then there exists a proper, lsc,
convex function f such that T = ∂f and, moreover, any such function
belongs to F .

Theorem (“F∗ = F ”)
If f ∈ F is a proper function then f ∗ ∈ F .

The key step of the proof is: if ∂f ∈ T then (∂f )−1 = ∂f ∗ ∈ T .
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Closure of F under Fenchel Conjugation

Assumption (c) of the F-function definition is essential for closure under
Fenchel conjugation. Recall:

Definition (Part (c) of F -functions)

(c) the restriction of f to (ai , ai+1) is either:
(i) affine,
(ii) differentiable and strictly convex, or
(iii) identically equal to +∞.

In its absence, the closure can fail spectacularly.

Example (Lauster)
There exists a convex f : R→ R which is infinitely differentiable on
R \ {0} such that its Fenchel conjugate, f ∗, is not differentiable at
infinitely many points in its domain. In particular, f ∗ 6∈ F .
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Examples and Illustrations

I will now give three example illustrations of the framework. Namely,
1 Explicit Formula for Proximity Operators
2 Recovery of Penalty Functions
3 Superexpectations, Superdistributions and Superquantiles

The examples are programmed in Maple and use the SCAT package where
appropriate. The code can be found online at:

http://vaopt.math.uni-goettingen.de/software.php

Or accessed through GWDG’s GitLab repository:

https://gitlab.gwdg.de/mtam/SymCA/

http://vaopt.math.uni-goettingen.de/software.php
https://gitlab.gwdg.de/mtam/SymCA/tree/master
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1. Explicit Formula for Proximity Operators

The proximity operator of a function f : Rn → (−∞,+∞] is given by

proxf := argmin
y∈Rn

{
f (y) +

1
2
‖ · −y‖2

}
.

When f is proper, lsc and convex, one has

proxf = (I + ∂f )−1.

That is, the proximity operator is the resolvent of the subdifferential.

The following approach is thus theoretically justified:

f ∈ F Th.
=⇒ ∂f ∈ T Prop.(d)

=⇒ (I + ∂f )−1 ∈ T .
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1. Explicit Formula for Proximity Operators

with(SCAT): # load the SCAT package
f := convert(abs(x), PWF); # define f and convert to PWF
format

f :=


−x x < 0
0 x = 0
x x > 0

sdf := SubDiff(f): # compute the subdiff of f
Assume(lambda > 0):
prox[’f’]^lambda = Invert(simplify(x+lambda*sdf),y); # prox f

proxλf =



{λ+ y} y < −λ
{0} y = −λ
{0} (−λ < y) and (y < λ)

{0} y = λ

{−λ+ y} λ < y
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1. Explicit Formula for Proximity Operators

with(SCAT): # load the SCAT package
Assume(a < b): # assume that the interval is proper
f := convert(piecewise(a<=x and x<=b, 0, infinity), PWF, x);

f :=



∞ x < a

0 x = a

0 (a < x) and (x < b)

0 x = b

∞ b < x

sdf := SubDiff(f): # compute the subdiff of f
P[[a, b]] = Invert(simplify(x+sdf),y); # proj onto [a,b]

P[a,b] =



{a} x < a

{a} x = a

{y} (a < y) and (y < b)

{b} x = b

{b} b < x
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2. Recovery of Penalty Functions

Given a monotone operator T : R ⇒ R, we consider the problem of
finding a so-called penalty function f : R→ (−∞,+∞]. That is, a
function f who subdifferential can be identified with T in the sense that

gphT ⊆ gph(proxf ).

Or equivalently, such that for all x ∈ R,

T (x) ⊆ proxf (x).

The problem was studied by Bayram (2015) without utilising symbolic
computational tools.
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2. Recovery of Penalty Functions
Proposition (Recovery of penalty functions)
Let T : Rn ⇒ Rn be a maximal cyclical monotone operator. There exists
a proper, lsc function f such that f + 1

2‖ · ‖
2 convex and T = proxf .

Furthermore, if T ∈ F then there is an f such that f + 1
2‖ · ‖

2 ∈ F .

Proof sketch. Take f = h∗(y)− 1
2‖y‖

2. This is justified because

T (x) = ∂h(x) = (∂h∗)
−1

(x) = {y ∈ Rn : x ∈ ∂h∗(y)}
= argmin

y∈Rn
{h∗(y)− 〈x , y〉}

= argmin
y∈Rn

{(
h∗(y)− 1

2
‖y‖2

)
+

1
2
‖x − y‖2

}
.

The following approach is thus theoretically justified:

T ∈ T integ.
=⇒ h ∈ F Prop.

=⇒ h∗ ∈ F
− 1

2‖·‖
2

=⇒ penalty function
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2‖ · ‖

2 ∈ F .

Proof sketch. Take f = h∗(y)− 1
2‖y‖

2. This is justified because

T (x) = ∂h(x) = (∂h∗)
−1

(x) = {y ∈ Rn : x ∈ ∂h∗(y)}
= argmin

y∈Rn
{h∗(y)− 〈x , y〉}

= argmin
y∈Rn

{(
h∗(y)− 1

2
‖y‖2

)
+

1
2
‖x − y‖2

}
.

The following approach is thus theoretically justified:

T ∈ T integ.
=⇒ h ∈ F Prop.

=⇒ h∗ ∈ F
− 1

2‖·‖
2

=⇒ penalty function
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2. Recovery of Penalty Functions

with(SCAT): # load the SCAT package
Assume(alpha > 0):
H := SD([x, -alpha, 0, x, 0, alpha, 0, x, x], [x], x::real);

H :=



{x} x < −α
{0, x} x = −α
{0} (−α < x) and (x < α)

{0, x} x = α

{x} x < α

Conjh := Conj(Integ(H),y):
f = factor(simplify(Conjh-1/2*y^2));

f =



0 y < −α
1
2 (α− y)(α+ y) y = −α
1
2 (α+ y)2 (−α < y) and (y < 0)
− 1

2α
2 − 1

2 y
2 y = 0

− 1
2 (α− y)2 (0 < y) and (y < α)

1
2 (α− y)(α+ y) y = α

0 α < y
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3. Superexpectations, Superdistributions and Superquantiles

The following example is from Rockafellar–Royset, 2013.

Example (exponential distributions). Let X be exponentially distributed with parameter
λ > 0. Then the distribution function is FX (x) = 1− exp(−λx), the superexpectation
function is

EX (x) =

{
x + (1/λ) exp(−λx) for x ≥ 0,
1/λ for x < 0,

and the conjugate superexpection function is E∗
X (p) = (1/λ)(p − 1)(1− log(1− p)) for

p ∈ [0, 1). Quantile and superquantiles are thus given on (0, 1) by

QX (p) = −(1/λ) log(1− p), QX (p) = (1/λ)[1− log(1− p)].

Starting with the distribution function FX , we can symbolic compute the
various objects. In particular, the superexpection function

EX (x) := E(max{x ,X}),

is suited for symbolic computation not through its definition but rather
by integration of FX .
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Rockafellar & Royset
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3. Rockafellar & Royset (cont.)

with(SCAT):
F := 1-exp(-lambda*x): # distribution fn of X
Q := solve(F=p,x); # quantile fn of X

Q := − ln(1− p)

λ
# superquantile fn of X
superQ := factor(1/(1-p)*int(subs(p=t,Q),t=p..1));

superQ := − ln(1− p)− 1
λ

Assume(lambda>0):
F := convert(piecewise(x >= 0,F), SD,x);

E :=


{0} x < 0
{0} x = 0
{1− e−λx} 0 < x
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3. Rockafellar & Royset (cont.)

# compute the superexpection function of F
E0 := Integ(F,x):
c0 := Eval(simplify(E0-x), x = infinity):
E := simplify(E0 - c0);

E :=



1
λ

x < 0

1
λ

x = 0

λx + e−λx

λ
0 < x

conjE := conjE(E,p,x); # the conjugate of the superexpectation

conjE :=



∞ p < 0

−
1
λ

p = 0

−
(−1 + p)(ln(1− p)− 1)

λ
(0 < p) and (p < 1)

0 p = 1
∞ 1 < p
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Conclusions and Outlook

The classes of F-functions and T -operators are well-suited to
manipulation within a CAS and encompasses important examples.
Robustness is a consequence of theoretical underpinnings.
Easily accessible to non-specialists and students.
Further work: Extensions to higher dimensions via recursion.
e.g., Define T 1 := T and say T : Rn ⇒ Rn is a T n-operator if

(x2, x3, . . . , xn) 7→ T (t, x2, x3, . . . , xn)

is a T n−1-operator, for each fixed t ∈ R.

F. Lauster, D.R. Luke and M.K. Tam: Symbolic computation with
monotone operators, arXiv:1703.05946 (March 2017).

Maple worksheet for examples given in this talk online at:
http://vaopt.math.uni-goettingen.de

http://arxiv.org/abs/1703.05946
http://vaopt.math.uni-goettingen.de

