Algorithms Based on Unions of Nonexpansive Maps

Matthew K. Tam Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen

joint work with Minh N. Dao (University of Newcastle)

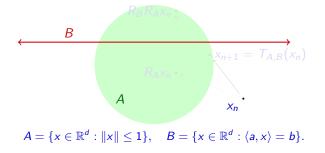
ISMP in Bordeaux, July 1-6, 2018

(ロ) (部) (言) (言) き のへで 1/16

Let $A, B \subseteq \mathbb{R}^d$. Given $x_0 \in \mathbb{R}^d$, the Douglas-Rachford algorithm can be compactly described as the fixed point iteration given by $T_{A,B}$, that is,

$$x_{n+1} \in T_{A,B}(x_n) := \left(\frac{\operatorname{Id} + R_B R_A}{2}\right)(x_n) \quad \forall n \in \mathbb{N}$$

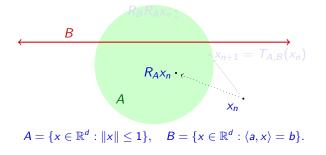
where $R_A := 2P_A - Id$ and $P_A(x) = nearest point(s)$ to x in A.



Let $A, B \subseteq \mathbb{R}^d$. Given $x_0 \in \mathbb{R}^d$, the Douglas-Rachford algorithm can be compactly described as the fixed point iteration given by $T_{A,B}$, that is,

$$x_{n+1} \in T_{A,B}(x_n) := \left(\frac{\operatorname{Id} + R_B R_A}{2}\right)(x_n) \quad \forall n \in \mathbb{N}$$

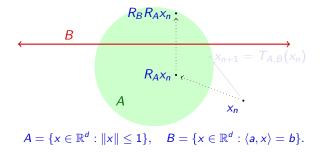
where $R_A := 2P_A - Id$ and $P_A(x) = nearest point(s)$ to x in A.



Let $A, B \subseteq \mathbb{R}^d$. Given $x_0 \in \mathbb{R}^d$, the Douglas-Rachford algorithm can be compactly described as the fixed point iteration given by $T_{A,B}$, that is,

$$x_{n+1} \in T_{A,B}(x_n) := \left(\frac{\operatorname{Id} + R_B R_A}{2}\right)(x_n) \quad \forall n \in \mathbb{N}$$

where $R_A := 2P_A - Id$ and $P_A(x) = nearest point(s)$ to x in A.

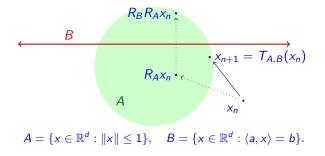


(□) (圖) (필) (필) (필) 및 이익은 2/16

Let $A, B \subseteq \mathbb{R}^d$. Given $x_0 \in \mathbb{R}^d$, the Douglas-Rachford algorithm can be compactly described as the fixed point iteration given by $T_{A,B}$, that is,

$$x_{n+1} \in T_{A,B}(x_n) := \left(\frac{\operatorname{Id} + R_B R_A}{2}\right)(x_n) \quad \forall n \in \mathbb{N}$$

where $R_A := 2P_A - Id$ and $P_A(x) = nearest point(s)$ to x in A.

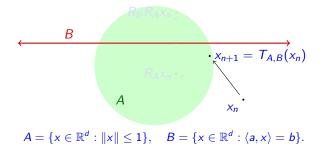


(□) (@) (문) (문) 문 의약 2/16

Let $A, B \subseteq \mathbb{R}^d$. Given $x_0 \in \mathbb{R}^d$, the Douglas-Rachford algorithm can be compactly described as the fixed point iteration given by $T_{A,B}$, that is,

$$x_{n+1} \in T_{A,B}(x_n) := \left(\frac{\operatorname{Id} + R_B R_A}{2}\right)(x_n) \quad \forall n \in \mathbb{N}$$

where $R_A := 2P_A - Id$ and $P_A(x) = nearest point(s)$ to x in A.



(□) (圖) (필) (필) 필) 900 2/16

A non-comprehensive history:

- Ouglas-Rachford ('56): proposed for solving heat flow problems.
- Solutions-Mercier ('79): globally convergent if A and B are convex.
- Bauschke–Noll ('14): locally convergent around strong fixed points if A = ∪_{i∈I}A_i and B = ∪_{i∈J}B_i are finite unions of closed convex sets.

For a set-valued map $T : \mathbb{R}^d \Longrightarrow \mathbb{R}^d$, there are two types of fixed points.

• Weak fixed point set:

Fix
$$T := \{x \in \mathbb{R}^d : x \in T(x)\}.$$

• Strong fixed point set:

Fix
$$T := \{x \in \mathbb{R}^d : \{x\} = T(x)\}.$$

<ロ> < □> < □> < 三> < 三> < 三> 三 のへで 3/16

Both notions coincide for single-valued operators.

A non-comprehensive history:

- Ouglas-Rachford ('56): proposed for solving heat flow problems.
- **2** Lions–Mercier ('79): globally convergent if A and B are convex.
- Bauschke–Noll ('14): locally convergent around strong fixed points if A = ∪_{i∈I}A_i and B = ∪_{i∈J}B_i are finite unions of closed convex sets.

For a set-valued map $T : \mathbb{R}^d \Longrightarrow \mathbb{R}^d$, there are two types of fixed points.

• Weak fixed point set:

Fix
$$T := \{x \in \mathbb{R}^d : x \in T(x)\}.$$

• Strong fixed point set:

Fix
$$T := \{x \in \mathbb{R}^d : \{x\} = T(x)\}.$$

Both notions coincide for single-valued operators.

Union Averaged Operators

An operator $S : \mathbb{R}^d \to \mathbb{R}^d$ is α -averaged if $\alpha \in (0, 1)$ and it holds that

 $S = \alpha I + (1 - \alpha)R$

for some nonexpansive operator $R : \mathbb{R}^d \to \mathbb{R}^d$.

Definition (Union Averaged)

We say a (set-valued) operator $T : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is union α -averaged if it can be represented in the form

$$T(x) = \{T_i(x) : i \in \phi(x)\} \quad \forall x \in \mathbb{R}^d,$$
(1)

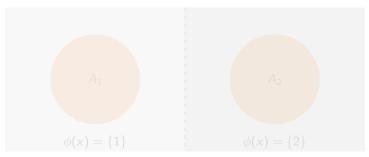
where

- / is a finite index set,
- $\{T_i\}_{i \in I}$ is a collection of α -averaged operators, and
- $\phi : \mathbb{R}^d \rightrightarrows I$ is nonempty-valued and outer semicontinuous (osc):

$$\phi(x) \supseteq \limsup_{y \to x} \phi(y) := \{i \in I : \exists (x_n, i_n) \to (x, i) \text{ s.t. } i_n \in \phi(x_n)\}.$$

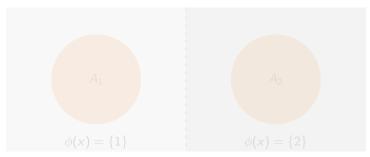
Let $A = \bigcup_{i \in I} A_i$ where A_i is convex. Then $P_A : \mathbb{R}^d \Rightarrow \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.



Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.

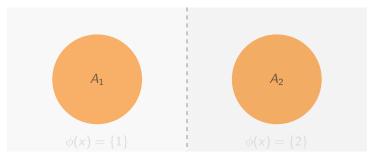


Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.

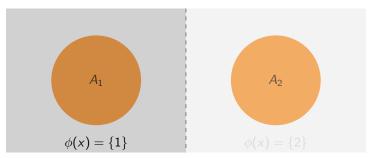
Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.



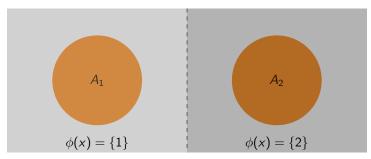
Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.



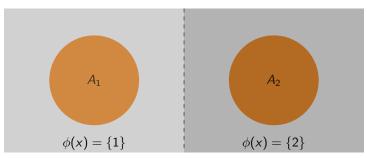
Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.



Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

To illustrate the idea, consider the union of two convex sets $A = A_1 \cup A_2$.



Union Averaged Operators: Sparsity Constraints

Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

Let $s \in \{0, 1..., d\}$. Consider the sparsity constraint given by $\mathcal{A} := \{x \in \mathbb{R}^d : \|x\|_0 \leq s\}.$

By denoting $\mathcal{I} := \{I \in 2^{\{1,2,\dots,d\}} : |I| = s\}$, we may express the sparsity constraint A as a finite union of subspaces:

 $A = \bigcup_{I \in \mathcal{I}} A_I \text{ where } A_I := \{x \in \mathbb{R}^d : x_i \neq 0 \text{ only if } i \in I\}$ llows that P_A is union 1/2-averaged nonexpansive.

Union Averaged Operators: Sparsity Constraints

Let $A = \bigcup_{i \in I} A_I$ where A_i is convex. Then $P_A : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is given by $P_A(x) := \{a \in A : ||x - a|| = d(x, A)\} = \{P_{A_i}(x) : i \in \phi(x)\}$ where $\phi(x) := \{i \in I : d(x, A_i) = \min_{i \in I} d(x, A_i)\}.$

Let $s \in \{0, 1, \dots, d\}$. Consider the sparsity constraint given by

$$A:=\{x\in\mathbb{R}^d:\|x\|_0\leq s\}.$$

By denoting $\mathcal{I} := \{I \in 2^{\{1,2,\dots,d\}} : |I| = s\}$, we may express the sparsity constraint A as a finite union of subspaces:

$$A = \bigcup_{I \in \mathcal{T}} A_I \text{ where } A_I := \{ x \in \mathbb{R}^d : x_i \neq 0 \text{ only if } i \in I \}.$$

It follows that P_A is union 1/2-averaged nonexpansive.

Building New Union Averaged Operators

Union averaged operators are closed under various operators.

Proposition (Dao-T.)

Let $I := \{1, ..., m\}$ and, for each $i \in I$, suppose $T_i : X \rightrightarrows X$ is union α_i -averaged nonexpansive. Then the following assertions hold.

(a) $T := \sum_{i \in I} \omega_i T_i$ is union α -averaged nonexpansive with

$$\alpha := \sum_{i \in I} \omega_i \alpha_i$$

whenever $(\omega_i)_{i \in I} \subseteq \mathbb{R}_{++}$ with $\sum_{i \in I} \omega_i = 1$.

(b) $T' := T_m \circ \cdots \circ T_2 \circ T_1$ is union α' -averaged nonexpansive with

$$lpha' := \left(1 + \left(\sum_{i \in I} rac{lpha_i}{1 - lpha_i}
ight)^{-1}
ight)^{-1}$$

Theorem (T., 2018)

Suppose $T : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is union α -averaged with $x^* \in \mathbf{Fix} T$. Define

$$\mathsf{r} := \sup \left\{ \delta > \mathsf{0} : \phi(x) \subseteq \phi(x^*) \text{ for all } x \in \mathbb{B}(x^*; \delta) \right\}. \tag{2}$$

Then r > 0 and, for any $\epsilon \in (0, r)$, it holds that

$$\|y - x^*\| \le \|x - x^*\|$$
 whenever $x \in \mathbb{B}(x^*; \epsilon), y \in T(x)$. (3)

Furthermore, if $x_0 \in \mathbb{B}(x^*; \epsilon)$ and $x_{n+1} \in T(x_n)$ for all $n \in \mathbb{N}$, then the fixed point iterates $(x_n)_{n \in \mathbb{N}}$ converge to a point $\overline{x} \in \text{Fix } T \cap \mathbb{B}(x^*; \epsilon)$.

Consequences and remarks:

• If $\exists x^* \in Fix T$ s.t. $\phi(x^*) = I$, then $r = +\infty \implies$ glob. convergence.

• In general, $(x_n)_{n \in \mathbb{N}}$ need not stay in $\mathbb{B}(x^*; \epsilon)$ if $x^* \in \operatorname{Fix} T \setminus \operatorname{Fix} T$.

• In general, the limit $\overline{x} = \lim_{n \to \infty} x_n$ need not be an element of **Fix** *T*.

Theorem (T., 2018)

Suppose $T : \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is union α -averaged with $x^* \in \mathbf{Fix} T$. Define

$$\mathsf{r} := \sup\left\{\delta > 0 : \phi(x) \subseteq \phi(x^*) \text{ for all } x \in \mathbb{B}(x^*; \delta)\right\}. \tag{2}$$

Then r > 0 and, for any $\epsilon \in (0, r)$, it holds that

$$\|y - x^*\| \le \|x - x^*\|$$
 whenever $x \in \mathbb{B}(x^*; \epsilon), y \in T(x)$. (3)

Furthermore, if $x_0 \in \mathbb{B}(x^*; \epsilon)$ and $x_{n+1} \in T(x_n)$ for all $n \in \mathbb{N}$, then the fixed point iterates $(x_n)_{n \in \mathbb{N}}$ converge to a point $\overline{x} \in \text{Fix } T \cap \mathbb{B}(x^*; \epsilon)$.

Consequences and remarks:

- If $\exists x^* \in \mathbf{Fix} \ T$ s.t. $\phi(x^*) = I$, then $r = +\infty \implies$ glob. convergence.
- In general, $(x_n)_{n \in \mathbb{N}}$ need not stay in $\mathbb{B}(x^*; \epsilon)$ if $x^* \in \operatorname{Fix} T \setminus \operatorname{Fix} T$.
- In general, the limit $\overline{x} = \lim_{n \to \infty} x_n$ need not be an element of **Fix** *T*.

This following example is due to Bauschke and Noll (2014).

Example (strong fixed point needed)

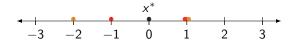
Consider the DR operator $T_{A,B} : \mathbb{R} \Longrightarrow \mathbb{R}$ given by

$$T_{A,B} := \frac{I + R_B R_A}{2}$$

for the sets $A = \{-1, 1\}$ and $B = \{-2, 1\}$. Then

 $x^* := 0 \in \mathsf{Fix} \ T_{A,B} \setminus \mathsf{Fix} \ T_{A,B}$

but, for any $x \in (-\epsilon, 0)$ with $\epsilon \approx 0$, $x_+ \in T_{A,B}x$ need be in $\mathbb{B}(x^*, \epsilon)$.



• Fixed point iterates are stable around strong fixed points.

Example (limit points need not be strong fixed points)

Consider $T : \mathbb{R} \Longrightarrow \mathbb{R}$ defined by

 $T(x) := \{T_1(x), T_2(x)\},\$

where $T_1(x) = 0$ and $T_2(x) = x$ (*i.e.*, $\phi(x) = \{1, 2\}$ for all $x \in \mathbb{R}$). Then

Fix $T = \{0\}$ and Fix $T = \mathbb{R}$.

For any $\overline{x} \in \mathbb{R} \setminus \{0\}$, the constant sequence $x_n = x$ for all $n \in \mathbb{N}$ satisfies $x_{n+1} \in T(x_n)$ but (trivially) converges to $\overline{x} \in \text{Fix } T \setminus \text{Fix } T$.

(ロ) (日) (日) (日) (日) (日) (10/16)

1. Nonconvex Feasibility Problems

Let $J = \{1, \ldots, m\}$. Consider the nonconvex feasibility problem:

find
$$x \in \bigcap_{j \in J} C_i$$
 with $C_j = \bigcup_{i \in I_j} C_{i,j}$, (4)

where all index sets are finite, and the $C_{i,j}$'s are closed and convex.

• The projector P_{C_i} is union $\frac{1}{2}$ -averaged nonexpansive, for all $j \in J$.

While combinatorial feasibility problems (*e.g.*, Sudoku) are of the form (4), local convergence guarantees are not usually interesting because one can simply "round" near solutions.

		5	3					
8							2	
	7			1		5		
4					5	3		
	1			7				6
		3	2				8	
	6		5					9
		4					3	
					9	7		

1	4	5	3	2	7	6	9	8
8	3	9	6	5	4	1	2	7
6	7	2	9	1	8	5	4	3
4	9	6	1	8	5	3	7	2
2	1	8	4	7	3	9	5	6
7	5	3	2	9	6	4	8	1
3	6	7	5	4	2	1	8	9
9	8	4	7	6	1	2	3	5
5	2	1	8	3	9	7	6	4
		•	C (C)	•		•	< E	•

୬ ୧୯ 11/16

1. Nonconvex Feasibility Problems

Let $J = \{1, \ldots, m\}$. Consider the nonconvex feasibility problem:

find
$$x \in \bigcap_{j \in J} C_i$$
 with $C_j = \bigcup_{i \in I_j} C_{i,j}$, (4)

where all index sets are finite, and the $C_{i,j}$'s are closed and convex.

• The projector P_{C_i} is union $\frac{1}{2}$ -averaged nonexpansive, for all $j \in J$.

While combinatorial feasibility problems (*e.g.*, Sudoku) are of the form (4), local convergence guarantees are not usually interesting because one can simply "round" near solutions.

		5	3					
8							2	
	7			1		5		
4					5	3		
	1			7				6
		3	2				8	
	6		5					9
		4					3	
					9	7		

1	4	5	3	2	7	6	9	8
8	3	9	6	5	4	1	2	7
6	7	2	9	1	8	5	4	3
4	9	6	1	8	5	3	7	2
2	1	8	4	7	3	9	5	6
7	5	3	2	9	6	4	8	1
3	6	7	5	4	2	1	8	9
9	8	4	7	6	1	2	3	5
5	2	1	8	3	9	7	6	4
_		•	C di	•		•	< E	•

E ∽ Q @ 11/16

1. Nonconvex Feasibility Problems

Theorem (Dao-T.)

Let $x^* \in \bigcap_{j \in J} C_j$ for sets C_j as in (4). Then there exists r > 0 such that if $x_0 \in \mathbb{B}(x^*; r)$ and $(x_n)_{n \in \mathbb{N}}$ satisfies

$$\forall n \in \mathbb{N}, \quad x_{n+1} \in T(x_n),$$

then $x_n \to \overline{x}$ and either $\overline{x} \in \bigcap_{j \in J} C_j$ or $P_{C_1}(\overline{x}) \cap (\bigcap_{j \in J} C_j) \neq \emptyset$ whenever **a** $T := P_{C_m} \circ \cdots \circ P_{C_1}$ (method of cyclic projections). **a** $T = T_{C_m,C_1} \circ \ldots T_{C_2,C_3} \circ T_{C_1,C_2}$ and C_1 convex (CA-DR algorithm). **b** $T := T_{C_1,C_2}$ (DR algorithm).

• Not immediate that the limit point \overline{x} is related to the intersection!

Other projection methods still converge locally, but it unclear whether their weak fixed points can be used to obtain a point in the intersection.

2. The Proximal Point Algorithm

Definition (min-convex)

A function $g : \mathbb{R}^d \to (-\infty, +\infty]$ is min-convex if there exists a finite set I and a collection of proper, lsc, convex functions $\{f_i\}_{i \in I}$ such that

 $g(x) = \min_{i \in I} g(x), \quad \forall x \in \mathbb{R}^d.$

• g min-convex & $\gamma > 0 \implies \operatorname{prox}_{\gamma g}$ union $\frac{1}{2}$ -averaged nonexpansive.

Theorem (Dao-T.)

Let $\gamma > 0$, suppose g is min-convex and $x^* \in \mathsf{Fix}(\mathsf{prox}_{\gamma g})$. Then there exists an r > 0 such that if $x_0 \in \mathbb{B}(x^*; r)$ and $(x_n)_{n \in \mathbb{N}}$ satisfies

$$\forall n \in \mathbb{N}, \quad x_{n+1} \in \operatorname{prox}_{\gamma g}(x_n),$$

then $(x_n)_{n \in \mathbb{N}}$ converges to a local minimum of g.

3. Sparsity Constrained Minimisation

Consider the sparsity constrained minimisation problem

$$\min_{x\in\mathbb{R}^d} \{f(x): \|x\|_0 \le s\},\tag{P}$$

where $f : \mathbb{R}^d \to \mathbb{R}$ is convex with *L*-Lipschitz gradient, $||x||_0$ denotes the ℓ_0 -functional, and $s \in \{0, 1, \dots, d-1\}$ is an *a priori* sparsity estimate.

The forward-backward algorithm for (P) can be compactly described as

$$x_{n+1} \in T(x_n) := P_A(x_n - \gamma \nabla f(x_n)) \quad \forall n \in \mathbb{N},$$

where the step-size satisfies $\gamma \in (0, 2/L)$ and $A := \{x \in \mathbb{R}^d : ||x||_0 \le s\}$.

- Near strong fixed points of *T*, any sequence (x_n) satisfying (14) is locally convergent to a weak fixed point.
- Every weak fixed point is a local minimia of the (P).
- ② Weak fixed points are strong whenever γ is sufficiently small

3. Sparsity Constrained Minimisation

Consider the sparsity constrained minimisation problem

$$\min_{x\in\mathbb{R}^d} \{f(x): \|x\|_0 \le s\},\tag{P}$$

where $f : \mathbb{R}^d \to \mathbb{R}$ is convex with *L*-Lipschitz gradient, $||x||_0$ denotes the ℓ_0 -functional, and $s \in \{0, 1, \dots, d-1\}$ is an *a priori* sparsity estimate.

The forward-backward algorithm for (P) can be compactly described as

$$x_{n+1} \in T(x_n) := P_A(x_n - \gamma \nabla f(x_n)) \quad \forall n \in \mathbb{N},$$

where the step-size satisfies $\gamma \in (0, 2/L)$ and $A := \{x \in \mathbb{R}^d : ||x||_0 \le s\}$.

- Near strong fixed points of *T*, any sequence (x_n) satisfying (14) is locally convergent to a weak fixed point.
- Severy weak fixed point is a local minimia of the (P).
- **(9)** Weak fixed points are strong whenever γ is sufficiently small.

3. Sparsity Constrained Minimisation

In general, this is a special case of the following result. Consider

 $\min_{x\in\mathbb{R}^d}\{f(x)+g(x)\},\$

where the function $f : \mathbb{R}^d \to \mathbb{R}$ is convex with *L*-Lipschitz gradient and $g : \mathbb{R}^d \to (-\infty, +\infty]$ is min-convex.

(For sparsity constrained min, take g to be the indicator function of A.)

Theorem (T., 2018, Dao-T.)

Suppose that $x^* \in \text{Fix } T_{\text{FB}}$. Then there exists an r > 0 such that if $x_0 \in \mathbb{B}(x^*; r)$ and $(x_n)_{n \in \mathbb{N}}$ satisfies

$$x_{n+1} \in T(x_n) := \operatorname{prox}_{\gamma g}(x_n - \gamma \nabla f(x_n)) \quad \forall n \in \mathbb{N},$$

then $x_n \to \overline{x} \in \text{Fix } T_{\text{FB}}$ which is local minimum of f + g.

(5)

Concluding Remarks

- We introduced the notion of union averaged operators which generalises the ideas of Bauschke & Noll (2014).
- The corresponding fixed point iterations are locally convergent around strong fixed points.
- For reasonable (proximal) methods, there is a correspondence between fixed points and local minima.
- Applications in nonconvex feasibility problems, the proximal point algorithm, and in sparsity constrained minimisation.
- **Open question:** The "right" framework for infinite dimensional extensions (weak osc of ϕ is too strong in general).
- M.K. Tam: Algorithms based on unions of nonexpansive maps, *Optimization Letters*, 2018. Preprint: arXiv:1510.06823
 - M.N. Dao and M.K. Tam: Union averaged operators for proximal algorithms, *in preparation*.