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Background: The Douglas—Rachford Algorithm

Let A, B C RY. Given xp € R?, the Douglas—Rachford algorithm can be
compactly described as the fixed point iteration given by Tx g, that is,

ld +RgR
Xns1 € Tap(xm) = <+25A> () VneN

where Ry :=2P4 — Id and P4(x) = nearest point(s) to x in A.
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A={xeR?: |x|]| <1}, B={xeR?:(ax)=b}.
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Let A, B C RY. Given xp € R?, the Douglas—Rachford algorithm can be
compactly described as the fixed point iteration given by Tx g, that is,

ld +RgR
Xns1 € Tap(xm) = <+25A> () VneN

where Ry :=2P4 — Id and P4(x) = nearest point(s) to x in A.

« Xpt1 = Ta,(Xn)
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Background: The Douglas—Rachford Algorithm

A non-comprehensive history:
@ Douglas—Rachford ('56): proposed for solving heat flow problems.
@ Lions—Mercier ('79): globally convergent if A and B are convex.

@ Bauschke—Noll ('14): locally convergent around strong fixed points if
A = Uijc/A;i and B = Uj¢B; are finite unions of closed convex sets.
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A non-comprehensive history:
@ Douglas—Rachford ('56): proposed for solving heat flow problems.
@ Lions—Mercier ('79): globally convergent if A and B are convex.

@ Bauschke—Noll ('14): locally convergent around strong fixed points if
A = Uijc/A;i and B = Uj¢B; are finite unions of closed convex sets.

For a set-valued map T : RY = RY, there are two types of fixed points.
o Weak fixed point set:

Fix T:={xeR?: x e T(x)}.
@ Strong fixed point set:
Fix T:={xeR?: {x} = T(x)}.

Both notions coincide for single-valued operators.



Union Averaged Operators

An operator S : RY — R9 is a-averaged if a € (0,1) and it holds that
S=al+(1-o)R

for some nonexpansive operator R : RY — R4,

Definition (Union Averaged)

We say a (set-valued) operator T : RY = R? is union a-averaged if it
can be represented in the form

T(x)={Ti(x):i€p(x)} VxecR (1)
where
@ [ is a finite index set,
@ {T;}ic/ is a collection of a-averaged operators, and
e ¢ :R? = | is nonempty-valued and outer semicontinuous (osc):

o(x) 2 Li}r/llsxup O(y) :=Hi €1 :3(xn, In) = (X, 1) s.t. in € P(xn)}.




Union Averaged Operators: A First Example

Let A=[J.., A; where A; is convex. Then P4 : RY = R is given by

i€l

Pa(x):={a€A:|x—a||=d(x,A)}
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Let A=[J.., A; where A; is convex. Then P4 : RY = R is given by

iel
Pa(x):={a€A:|x—a||=d(x,A)} = {Pa(x) : i € ¢(x)}

where ¢(x) == {i € I : d(x, Ai) = minje; d(x, Aj)}.
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Union Averaged Operators: A First Example

Let A=,

A; where A; is convex. Then P, : RY = R is given by

Pa(x):={a€A:|x—a||=d(x,A)} = {Pa(x):i € p(x)}

where ¢(x) == {i € I : d(x, A;) = min;j¢; d(x, Aj)}.

To illustrate the idea, consider the union of two convex sets A = A; U As.

o(x) = {1}
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Union Averaged Operators: A First Example

Let A= J;c,; Al where A; is convex. Then Py : RY = R? is given by

Pa(x):={a€A:|x—a||=d(x,A)} = {Pa(x):i € p(x)}

where ¢(x) == {i € I : d(x, A;) = min;j¢; d(x, Aj)}.

To illustrate the idea, consider the union of two convex sets A = A; U As

o(x) = {1}

On the dashed line, ¢(x) = {1,2} which makes ¢ outer semicontinuous.
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Union Averaged Operators: Sparsity Constraints

Let A=J,., A; where A; is convex. Then P, : RY = R? is given by

Pa(x):={ac A:|x—a||=d(x,A)} = {Pa,(x):i € p(x)}

where ¢(x) == {i € | : d(x, A;) = min;j¢; d(x, Aj)}.



Union Averaged Operators: Sparsity Constraints

Let A= [J;c; Al where A; is convex. Then Py : RY = R? is given by
Pa(x):={ac A:|x—a||=d(x,A)} = {Pa,(x):i € p(x)}

where ¢(x) == {i € | : d(x, A;) = min;j¢; d(x, Aj)}.

Let s € {0,1...,d}. Consider the sparsity constraint given by
A:={xeR?: ||x|jo < s}.

By denoting 7 := {/ € 2{1:2+d} - |]| = s}, we may express the sparsity
constraint A as a finite union of subspaces:

A= UA, where A, ::{XeRd:x;#Oonlyifi€l}.
€T
It follows that P4 is union 1/2-averaged nonexpansive.




Building New Union Averaged Operators
Union averaged operators are closed under various operators.

Proposition (Dao-T.)

Let / :={1,...,m} and, for each i € I, suppose T; : X = X is union
a;-averaged nonexpansive. Then the following assertions hold.

(a) T :=);c;wiT;is union a-averaged nonexpansive with
o = Zw;a,-
icl
whenever (wi)ie; € Ry with » 7, wi =1
(b) T":=Tpo---0 Tyo Ty is union o’-averaged nonexpansive with

1
o =1+ (Z 1 fia.>

-1




Local Convergence

Theorem (T., 2018)

Suppose T : RY = R is union a-averaged with x* € Fix T. Define

r:=sup{0 > 0:¢(x) C ¢(x*) for all x € B(x*;0)}. (2)
Then r > 0 and, for any € € (0, r), it holds that
lly = x*|| < |lx — x*|| whenever x € B(x*;¢€), y € T(x). (3)

Furthermore, if xo € B(x*; €) and x,41 € T(x,) for all n € N, then the
fixed point iterates (x,)nen converge to a point X € Fix T NB(x*; €).




Local Convergence

Theorem (T., 2018)

Suppose T : RY = R is union a-averaged with x* € Fix T. Define

r:=sup{0 > 0:¢(x) C ¢(x*) for all x € B(x*;0)}. (2)
Then r > 0 and, for any € € (0, r), it holds that
lly = x*|| < |lx — x*|| whenever x € B(x*;¢€), y € T(x). (3)

Furthermore, if xo € B(x*; €) and x,41 € T(x,) for all n € N, then the
fixed point iterates (x,)nen converge to a point X € Fix T NB(x*; €).

Consequences and remarks:
o If Ix* € Fix T s.t. ¢(x*) =/, then r = +00 = glob. convergence.
@ In general, (x,)nen need not stay in B(x*;¢€) if x* € Fix T \ Fix T.

@ In general, the limit X = lim x, need not be an element of Fix T.
n—oo



Local Convergence

This following example is due to Bauschke and Noll (2014).

Example (strong fixed point needed)
Consider the DR operator T4 g : R = R given by

I+ RgR
Tas = [HRera 25 A
for the sets A= {—1,1} and B = {2, 1}. Then

x* =0 € Fix TA,B \ Fix TA,B

but, for any x € (—¢,0) with ¢ = 0, x; € T4 gx need be in B(x*, €).

X*
®
T

A

|
w
|
N
|
—
o
Y
N
w

Fixed point iterates are stable around strong fixed points.



Local Convergence

Example (limit points need not be strong fixed points)
Consider T : R = R defined by

T(x) = {Ti(x), T2(x)},

where Ti(x) =0 and Ta(x) = x (i.e., ¢(x) = {1,2} for all x € R). Then

Fix T = {0} and FixT =R.

For any X € R\ {0}, the constant sequence x, = x for all n € N satisfies
Xnt1 € T(x,) but (trivially) converges to x € Fix T \ Fix T.




1. Nonconvex Feasibility Problems

Let J ={1,..., m}. Consider the nonconvex feasibility problem:
findxe ()G with G=[]JCy (4)
jed icl;

where all index sets are finite, and the C;;'s are closed and convex.

@ The projector Pc; is union %—averaged nonexpansive, for all j € J.
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1. Nonconvex Feasibility Problems

Let J ={1,..., m}. Consider the nonconvex feasibility problem:
findxe ()G with G=[]JCy (4)
jed icl;

where all index sets are finite, and the C;;'s are closed and convex.

@ The projector Pc; is union %—averaged nonexpansive, for all j € J.

While combinatorial feasibility problems (e.g., Sudoku) are of the form
(4), local convergence guarantees are not usually interesting because one
can simply “round” near solutions.
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1. Nonconvex Feasibility Problems

Theorem (Dao-T.)

Let x* € Njc,C; for sets Cj as in (4). Then there exists r > 0 such that
if xo € B(x*; r) and (x,)nen satisfies

VYneN, X1 € T(xn),

then x, — X and either X € Njc,C; or P, (X) N (NjesCj) # O whenever
Q@ T :=Pc,o---0Pc (method of cyclic projections).
Q@ T=T¢,c°---Tc.c o Te.c, and G convex (CA-DR algorithm).
@ T := T¢ ¢ (DR algorithm).

o Not immediate that the limit point X is related to the intersection!

Other projection methods still converge locally, but it unclear whether
their weak fixed points can be used to obtain a point in the intersection.



2. The Proximal Point Algorithm

Definition (min-convex)

A function g : RY — (—o00, +00] is min-convex if there exists a finite
set /| and a collection of proper, Isc, convex functions {f;};c; such that

g(x) =ming(x), Vx€R.
IS

@ g min-convex & v >0 — prox., union %—averaged nonexpansive.

Theorem (Dao-T.)

Let v > 0, suppose g is min-convex and x* € Fix(prox,,). Then there
exists an r > 0 such that if xo € B(x*; r) and (xj)nen satisfies

VneN, x,11 € proxvg(x,,),

then (x,)nen converges to a local minimum of g.




3. Sparsity Constrained Minimisation

Consider the sparsity constrained minimisation problem

min{f(x) : [lxllo < s}, (P)

where f : R? — R is convex with L-Lipschitz gradient, ||x||o denotes the
Lo-functional, and s € {0,1,...,d — 1} is an a priori sparsity estimate.

The forward-backward algorithm for (P) can be compactly described as
Xnt1 € T(xn) == Pa(xs —7VF(x,)) VneN,
where the step-size satisfies v € (0,2/L) and A := {x € R? : ||x||o < s}.

@ Near strong fixed points of T, any sequence (x,) satisfying (14) is
locally convergent to a weak fixed point.
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Consider the sparsity constrained minimisation problem

min{f(x) : [lxllo < s}, (P)

where f : R? — R is convex with L-Lipschitz gradient, ||x||o denotes the
Lo-functional, and s € {0,1,...,d — 1} is an a priori sparsity estimate.

The forward-backward algorithm for (P) can be compactly described as
Xnt1 € T(xn) == Pa(xs —7VF(x,)) VneN,
where the step-size satisfies v € (0,2/L) and A := {x € R? : ||x||o < s}.

@ Near strong fixed points of T, any sequence (x,) satisfying (14) is
locally convergent to a weak fixed point.

@ Every weak fixed point is a local minimia of the (P).

© Weak fixed points are strong whenever + is sufficiently small.




3. Sparsity Constrained Minimisation

In general, this is a special case of the following result. Consider

min {£(x) + g(x)}.

where the function f : RY — R is convex with L-Lipschitz gradient and
g : RY — (—o0, +0o0] is min-convex.

(For sparsity constrained min, take g to be the indicator function of A.)

Theorem (T., 2018, Dao-T.)

Suppose that x* € Fix Tpg. Then there exists an r > 0 such that if
xo € B(x*; r) and (x,)nen satisfies

Xpt1 € T(xy) 1= prox,,(xn —YVFf(xs)) VneN, (5)

then x, — X € Fix Tgg which is local minimum of f + g.




Concluding Remarks

@ We introduced the notion of union averaged operators which
generalises the ideas of Bauschke & Noll (2014).

@ The corresponding fixed point iterations are locally convergent
around strong fixed points.

@ For reasonable (proximal) methods, there is a correspondence
between fixed points and local minima.

@ Applications in nonconvex feasibility problems, the proximal point
algorithm, and in sparsity constrained minimisation.

@ Open question: The "right” framework for infinite dimensional
extensions (weak osc of ¢ is too strong in general).

@ M.K. Tam: Algorithms based on unions of nonexpansive maps,
Optimization Letters, 2018. Preprint: arXiv:1510.06823

@ M.N. Dao and M.K. Tam: Union averaged operators for proximal
algorithms, in preparation.
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