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Background: The Douglas–Rachford Algorithm

Let A,B ⊆ Rd . Given x0 ∈ Rd , the Douglas–Rachford algorithm can be
compactly described as the fixed point iteration given by TA,B , that is,

xn+1 ∈ TA,B(xn) :=

(
Id+RBRA

2

)
(xn) ∀n ∈ N

where RA := 2PA − Id and PA(x) = nearest point(s) to x in A.

xn

RAxn

RBRAxn

xn+1 = TA,B(xn)

A

B

A = {x ∈ Rd : ‖x‖ ≤ 1}, B = {x ∈ Rd : 〈a, x〉 = b}.
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Background: The Douglas–Rachford Algorithm

A non-comprehensive history:
1 Douglas–Rachford (’56): proposed for solving heat flow problems.
2 Lions–Mercier (’79): globally convergent if A and B are convex.
3 Bauschke–Noll (’14): locally convergent around strong fixed points if

A = ∪i∈IAi and B = ∪j∈JBi are finite unions of closed convex sets.

For a set-valued map T : Rd ⇒ Rd , there are two types of fixed points.
Weak fixed point set:

FixT := {x ∈ Rd : x ∈ T (x)}.

Strong fixed point set:

FixT := {x ∈ Rd : {x} = T (x)}.

Both notions coincide for single-valued operators.
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Union Averaged Operators
An operator S : Rd → Rd is α-averaged if α ∈ (0, 1) and it holds that

S = αI + (1− α)R

for some nonexpansive operator R : Rd → Rd .

Definition (Union Averaged)
We say a (set-valued) operator T : Rd ⇒ Rd is union α-averaged if it
can be represented in the form

T (x) = {Ti (x) : i ∈ φ(x)} ∀x ∈ Rd , (1)
where

I is a finite index set,
{Ti}i∈I is a collection of α-averaged operators, and
φ : Rd ⇒ I is nonempty-valued and outer semicontinuous (osc):

φ(x) ⊇ Lim sup
y→x

φ(y) := {i ∈ I : ∃(xn, in)→ (x , i) s.t. in ∈ φ(xn)}.
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Union Averaged Operators: A First Example

Let A =
⋃

i∈I AI where Ai is convex. Then PA : Rd ⇒ Rd is given by

PA(x) := {a ∈ A : ‖x − a‖ = d(x ,A)} = {PAi (x) : i ∈ φ(x)}

where φ(x) := {i ∈ I : d(x ,Ai ) = mini∈I d(x ,Aj)}.

To illustrate the idea, consider the union of two convex sets A = A1 ∪A2.

A1 A2

φ(x) = {1} φ(x) = {2}

On the dashed line, φ(x) = {1, 2} which makes φ outer semicontinuous.
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Union Averaged Operators: Sparsity Constraints

Let A =
⋃

i∈I AI where Ai is convex. Then PA : Rd ⇒ Rd is given by

PA(x) := {a ∈ A : ‖x − a‖ = d(x ,A)} = {PAi (x) : i ∈ φ(x)}

where φ(x) := {i ∈ I : d(x ,Ai ) = mini∈I d(x ,Aj)}.

Let s ∈ {0, 1 . . . , d}. Consider the sparsity constraint given by

A := {x ∈ Rd : ‖x‖0 ≤ s}.

By denoting I := {I ∈ 2{1,2,...,d} : |I | = s}, we may express the sparsity
constraint A as a finite union of subspaces:

A =
⋃
I∈I

AI where AI := {x ∈ Rd : xi 6= 0 only if i ∈ I}.

It follows that PA is union 1/2-averaged nonexpansive.
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Building New Union Averaged Operators

Union averaged operators are closed under various operators.

Proposition (Dao–T.)
Let I := {1, . . . ,m} and, for each i ∈ I , suppose Ti : X ⇒ X is union
αi -averaged nonexpansive. Then the following assertions hold.

(a) T :=
∑

i∈I ωiTi is union α-averaged nonexpansive with

α :=
∑
i∈I

ωiαi

whenever (ωi )i∈I ⊆ R++ with
∑

i∈I ωi = 1.

(b) T ′ := Tm ◦ · · · ◦ T2 ◦ T1 is union α′-averaged nonexpansive with

α′ :=

1+

(∑
i∈I

αi

1− αi

)−1
−1

.



8/16

Local Convergence

Theorem (T., 2018)
Suppose T : Rd ⇒ Rd is union α-averaged with x∗ ∈ FixT . Define

r := sup {δ > 0 : φ(x) ⊆ φ(x∗) for all x ∈ B(x∗; δ)} . (2)

Then r > 0 and, for any ε ∈ (0, r), it holds that

‖y − x∗‖ ≤ ‖x − x∗‖ whenever x ∈ B(x∗; ε), y ∈ T (x). (3)

Furthermore, if x0 ∈ B(x∗; ε) and xn+1 ∈ T (xn) for all n ∈ N, then the
fixed point iterates (xn)n∈N converge to a point x ∈ FixT ∩ B(x∗; ε).

Consequences and remarks:
If ∃x∗ ∈ FixT s.t. φ(x∗) = I , then r = +∞ =⇒ glob. convergence.
In general, (xn)n∈N need not stay in B(x∗; ε) if x∗ ∈ FixT \ FixT .
In general, the limit x = lim

n→∞
xn need not be an element of FixT .
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Local Convergence
This following example is due to Bauschke and Noll (2014).

Example (strong fixed point needed)
Consider the DR operator TA,B : R ⇒ R given by

TA,B :=
I + RBRA

2

for the sets A = {−1, 1} and B = {−2, 1}. Then

x∗ := 0 ∈ FixTA,B \ FixTA,B

but, for any x ∈ (−ε, 0) with ε ≈ 0, x+ ∈ TA,Bx need be in B(x∗, ε).

−3 −2 −1 0 1 2 3

x∗

Fixed point iterates are stable around strong fixed points.
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Local Convergence

Example (limit points need not be strong fixed points)
Consider T : R ⇒ R defined by

T (x) := {T1(x),T2(x)},

where T1(x) = 0 and T2(x) = x (i.e., φ(x) = {1, 2} for all x ∈ R). Then

FixT = {0} and FixT = R.

For any x ∈ R \ {0}, the constant sequence xn = x for all n ∈ N satisfies
xn+1 ∈ T (xn) but (trivially) converges to x ∈ FixT \ FixT .
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1. Nonconvex Feasibility Problems
Let J = {1, . . . ,m}. Consider the nonconvex feasibility problem:

find x ∈
⋂
j∈J

Ci with Cj =
⋃
i∈Ij

Ci,j , (4)

where all index sets are finite, and the Ci,j ’s are closed and convex.

The projector PCj is union
1
2 -averaged nonexpansive, for all j ∈ J.

While combinatorial feasibility problems (e.g., Sudoku) are of the form
(4), local convergence guarantees are not usually interesting because one
can simply “round” near solutions.
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1. Nonconvex Feasibility Problems

Theorem (Dao-T.)
Let x∗ ∈ ∩j∈JCj for sets Cj as in (4). Then there exists r > 0 such that
if x0 ∈ B(x∗; r) and (xn)n∈N satisfies

∀n ∈ N, xn+1 ∈ T (xn),

then xn → x and either x ∈ ∩j∈JCj or PC1(x) ∩ (∩j∈JCj) 6= ∅ whenever
1 T := PCm ◦ · · · ◦ PC1 (method of cyclic projections).
2 T = TCm,C1 ◦ . . .TC2,C3 ◦ TC1,C2 and C1 convex (CA-DR algorithm).
3 T := TC1,C2 (DR algorithm).

Not immediate that the limit point x is related to the intersection!

Other projection methods still converge locally, but it unclear whether
their weak fixed points can be used to obtain a point in the intersection.
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2. The Proximal Point Algorithm

Definition (min-convex)
A function g : Rd → (−∞,+∞] is min-convex if there exists a finite
set I and a collection of proper, lsc, convex functions {fi}i∈I such that

g(x) = min
i∈I

g(x), ∀x ∈ Rd .

g min-convex & γ > 0 =⇒ proxγg union 1
2 -averaged nonexpansive.

Theorem (Dao-T.)
Let γ > 0, suppose g is min-convex and x∗ ∈ Fix(proxγg ). Then there
exists an r > 0 such that if x0 ∈ B(x∗; r) and (xn)n∈N satisfies

∀n ∈ N, xn+1 ∈ proxγg (xn),

then (xn)n∈N converges to a local minimum of g .
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3. Sparsity Constrained Minimisation

Consider the sparsity constrained minimisation problem

min
x∈Rd
{f (x) : ‖x‖0 ≤ s}, (P)

where f : Rd → R is convex with L-Lipschitz gradient, ‖x‖0 denotes the
`0-functional, and s ∈ {0, 1, . . . , d − 1} is an a priori sparsity estimate.

The forward-backward algorithm for (P) can be compactly described as

xn+1 ∈ T (xn) := PA (xn − γ∇f (xn)) ∀n ∈ N,

where the step-size satisfies γ ∈ (0, 2/L) and A := {x ∈ Rd : ‖x‖0 ≤ s}.

1 Near strong fixed points of T , any sequence (xn) satisfying (14) is
locally convergent to a weak fixed point.

2 Every weak fixed point is a local minimia of the (P).
3 Weak fixed points are strong whenever γ is sufficiently small.
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3. Sparsity Constrained Minimisation

In general, this is a special case of the following result. Consider

min
x∈Rd
{f (x) + g(x)},

where the function f : Rd → R is convex with L-Lipschitz gradient and
g : Rd → (−∞,+∞] is min-convex.

(For sparsity constrained min, take g to be the indicator function of A.)

Theorem (T., 2018, Dao-T.)
Suppose that x∗ ∈ FixTFB. Then there exists an r > 0 such that if
x0 ∈ B(x∗; r) and (xn)n∈N satisfies

xn+1 ∈ T (xn) := proxγg (xn − γ∇f (xn)) ∀n ∈ N, (5)

then xn → x ∈ FixTFB which is local minimum of f + g .
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Concluding Remarks

We introduced the notion of union averaged operators which
generalises the ideas of Bauschke & Noll (2014).
The corresponding fixed point iterations are locally convergent
around strong fixed points.
For reasonable (proximal) methods, there is a correspondence
between fixed points and local minima.
Applications in nonconvex feasibility problems, the proximal point
algorithm, and in sparsity constrained minimisation.
Open question: The “right” framework for infinite dimensional
extensions (weak osc of φ is too strong in general).
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