Splitting Algorithms with Forward Steps

Matthew K. Tam

Institute for Numerical and Applied Mathematics Georg-August-Universität Göttingen

ICCOPT, August 4-8, 2019

Splitting Algorithms with Forward Steps

◆□▶ ◆圖▶ ◆불▶ ◆불▶ 불 · ♡٩. · 2/17

Joint work with Robert Csetnek and Yura Malitsky

Proximal Gradient Descent

• Solutions characterised by the first order optimality condition:

• Can be solved using proximal gradient descent with $\lambda \in (0, 2/L)$:

$$x_{n+1} := \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)) \quad \forall n \in \mathbb{N}.$$

Proximal Gradient Descent

• Solutions characterised by the first order optimality condition:

 $0 \in (A+B)(x)$ where $A := \partial g$ and $B := \nabla f$.

• Can be solved using proximal gradient descent with $\lambda \in (0, 2/L)$:

$$x_{n+1} := \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)) \quad \forall n \in \mathbb{N}.$$

Abstracted to the framework of monotone operators, the previous minimisation problem becomes the monotone inclusion:

```
find x \in \mathcal{H} such that 0 \in (A + B)(x),
```

where:

• $A: \mathcal{H} \rightrightarrows \mathcal{H}$ is maximally monotone, and

• $B : \mathcal{H} \to \mathcal{H}$ is monotone and *L*-Lipschitz continuous.

Proximal gradient generalises to the forward-backward algorithm:

$$x_{k+1} := J_{\lambda A}(x_k - \lambda B(x_k))$$

where $J_{\lambda A} := (I + \lambda A)^{-1}$ is the resolvent of the monotone operator λA .

The standard proof of the forward-backward algorithm requires:

• $A = N_C$ and $B = \nabla f$ are both (maximal) monotone operators:

 $\langle x-u, y-v \rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u).$

• $B = \nabla f$ is β -cocoercive (equiv. B^{-1} is strongly monotone):

$$\langle x - y, Bx - By \rangle \ge \beta \|Bx - By\|^2$$
,

which implies *B* is $\frac{1}{B}$ -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)

Let $f : \mathcal{H} \to \mathbb{R}$ be a Fréchet differentiable convex function and let L > 0. Then ∇f is *L*-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

- * Proximal gradient descent **converges** when $B = \nabla f$ is *L*-Lipschitz because, in this case, the operator *B* is actually $\frac{1}{I}$ -cocoercive!
- If *B* is merely Lipschitz need (for instance):
 - Chen–Rockafellar 1997 A + B is strongly monotone.
 - Bello Cruz-Días Millán 2015 Backtracking procedure.

The standard proof of the forward-backward algorithm requires:

• $A = N_C$ and $B = \nabla f$ are both (maximal) monotone operators:

 $\langle x-u, y-v \rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u).$

• $B = \nabla f$ is β -cocoercive (equiv. B^{-1} is strongly monotone):

$$\langle x - y, Bx - By \rangle \ge \beta \|Bx - By\|^2,$$

which implies *B* is $\frac{1}{B}$ -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)

Let $f: \mathcal{H} \to \mathbb{R}$ be a Fréchet differentiable convex function and let L > 0. Then ∇f is *L*-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

- * Proximal gradient descent **converges** when $B = \nabla f$ is *L*-Lipschitz because, in this case, the operator *B* is actually $\frac{1}{I}$ -cocoercive!
- If *B* is merely Lipschitz need (for instance):
 - Chen–Rockafellar 1997 A + B is strongly monotone.
 - Bello Cruz-Días Millán 2015 Backtracking procedure.

The standard proof of the forward-backward algorithm requires:

• $A = N_C$ and $B = \nabla f$ are both (maximal) monotone operators:

 $\langle x-u, y-v \rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u).$

• $B = \nabla f$ is β -cocoercive (equiv. B^{-1} is strongly monotone):

 $\langle x - y, Bx - By \rangle \ge \beta \|Bx - By\|^2,$

which implies *B* is $\frac{1}{B}$ -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)

Let $f: \mathcal{H} \to \mathbb{R}$ be a Fréchet differentiable convex function and let L > 0. Then ∇f is *L*-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

- * Proximal gradient descent **converges** when $B = \nabla f$ is *L*-Lipschitz because, in this case, the operator *B* is actually $\frac{1}{l}$ -cocoercive!
- If *B* is merely Lipschitz need (for instance):
 - Chen–Rockafellar 1997 A + B is strongly monotone.
 - Bello Cruz-Días Millán 2015 Backtracking procedure.

The standard proof of the forward-backward algorithm requires:

• $A = N_C$ and $B = \nabla f$ are both (maximal) monotone operators:

 $\langle x-u, y-v \rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u).$

• $B = \nabla f$ is β -cocoercive (equiv. B^{-1} is strongly monotone):

 $\langle x - y, Bx - By \rangle \ge \beta \|Bx - By\|^2,$

which implies *B* is $\frac{1}{B}$ -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)

Let $f: \mathcal{H} \to \mathbb{R}$ be a Fréchet differentiable convex function and let L > 0. Then ∇f is *L*-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

- * Proximal gradient descent **converges** when $B = \nabla f$ is *L*-Lipschitz because, in this case, the operator *B* is actually $\frac{1}{l}$ -cocoercive!
- If *B* is merely Lipschitz need (for instance):
 - Chen–Rockafellar 1997 A + B is strongly monotone.
 - Bello Cruz-Días Millán 2015 Backtracking procedure.

Nonsmooth Convex Minimisation

Using Fenchel duality, this can be cast as " $0 \in (A + B)(z)$ " with

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \left(\underbrace{\begin{bmatrix} \partial g & 0\\ 0 & \partial f^* \end{bmatrix}}_{A} + \underbrace{\begin{bmatrix} 0 & \mathcal{K}^*\\ -\mathcal{K} & 0 \end{bmatrix}}_{B} \right) \underbrace{\begin{pmatrix} x\\y \end{pmatrix}}_{z} \subseteq \mathcal{H} \times \mathcal{H}.$$

The operator *B* is ||K||-Lipschitz continuous but **not** cocoercive.

Nonsmooth Convex Minimisation

Consider the minimisation problem $\min_{x \in \mathcal{H}} f(x) + g(Kx),$ where: • $f, g : \mathcal{H} \to (-\infty, +\infty]$ are proper, lsc and convex. • $K : \mathcal{H} \to \mathcal{H}$ is a linear, bounded operator with adjoint K^* .

Using Fenchel duality, this can be cast as " $0 \in (A + B)(z)$ " with

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \left(\underbrace{\begin{bmatrix} \partial g & 0\\ 0 & \partial f^* \end{bmatrix}}_{A} + \underbrace{\begin{bmatrix} 0 & K^*\\ -K & 0 \end{bmatrix}}_{B} \right) \underbrace{\begin{pmatrix} x\\y \end{pmatrix}}_{z} \subseteq \mathcal{H} \times \mathcal{H}.$$

The operator *B* is ||K||-Lipschitz continuous but **not** cocoercive.

Nonsmooth Convex Minimisation

Consider the minimisation problem $\min_{x \in \mathcal{H}} f(x) + g(Kx),$ where: • $f, g : \mathcal{H} \to (-\infty, +\infty]$ are proper, lsc and convex. • $K : \mathcal{H} \to \mathcal{H}$ is a linear, bounded operator with adjoint K^* .

Using Fenchel duality, this can be cast as " $0 \in (A + B)(z)$ " with

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \left(\underbrace{\begin{bmatrix} \partial g & 0\\ 0 & \partial f^* \end{bmatrix}}_{A} + \underbrace{\begin{bmatrix} 0 & K^*\\ -K & 0 \end{bmatrix}}_{B} \right) \underbrace{\begin{pmatrix} x\\y \end{pmatrix}}_{z} \subseteq \mathcal{H} \times \mathcal{H}.$$

The operator *B* is ||K||-Lipschitz continuous but **not** cocoercive.

Saddle Point Problems

Consider the saddle point problem $\min_{x \in \mathcal{H}} \max_{y \in \mathcal{H}} g(x) + \Phi(x, y) - f(y),$ where: • $f, g: \mathcal{H} \to (-\infty, +\infty]$ are proper, lsc and convex. • $\Phi: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is convex-concave with Lipschitz gradient.

First-order optimality condition yields " $0 \in (A + B)(z)$ " with

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial g(x)\\\partial f(y) \end{pmatrix}}_{A(z)} + \underbrace{\begin{pmatrix} \nabla_x \Phi(x,y)\\-\nabla_y \Phi(x,y) \end{pmatrix}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}$$

Again, the operator B is Lipschitz but **not** cocoercive.

(ロ) (部) (E) (E) E のQで 7/17

Saddle Point Problems

Consider the saddle point problem $\min_{x \in \mathcal{H}} \max_{y \in \mathcal{H}} g(x) + \Phi(x, y) - f(y),$ where: • $f, g: \mathcal{H} \to (-\infty, +\infty]$ are proper, lsc and convex. • $\Phi: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is convex-concave with Lipschitz gradient.

First-order optimality condition yields " $0 \in (A + B)(z)$ " with

$$\begin{pmatrix} 0\\ 0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial g(x)\\ \partial f(y) \end{pmatrix}}_{A(z)} + \underbrace{\begin{pmatrix} \nabla_x \Phi(x,y)\\ -\nabla_y \Phi(x,y) \end{pmatrix}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}.$$

Again, the operator B is Lipschitz but **not** cocoercive.

Forward-backward Splitting with Cocoercivity

In summary:

	Cocoercivity?	Lipschitz?
Smooth + nonsmooth minimisation	 ✓ 	1
Nonsmooth + nonsmooth minimisation	×	1
Saddle point problems	×	v

Goal: Splitting algorithms that:

- Only use $J_{\lambda A}$ (backward step) and B (forward step).
- Converge when *B* is Lipschitz (but not necessarily cocoercive).

Operator Splitting without Cocoercivity

Theorem (Tseng 2000)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0 \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{L})$, and set

> $y_k = J_{\lambda A}(x_k - \lambda B(x_k))$ $x_{k+1} = y_k - \lambda B(y_k) + \lambda B(x_k).$

Then (x_n) and (y_n) both converge weakly to a point $x \in (A + B)^{-1}(0)$.

- Requires one backward and two forward evaluations per iteration.
- Maximum stepsize is half that of the forward-backward algorithm.
- Fejér monotone. In fact, (x_k) satisfies

$$||x_{k+1} - x||^{2} + \epsilon ||x_{k} - y_{k}||^{2} \le ||x_{k} - x||^{2}.$$

• Variant of Tseng's method studied by Combettes-Pesquet 2012.

Another approaches to the same problem:

- Eckstein–Johnstone 2019 Projective splitting w/forward steps.

Operator Splitting without Cocoercivity

Theorem (Tseng 2000)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0 \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{L})$, and set

> $y_k = J_{\lambda A}(x_k - \lambda B(x_k))$ $x_{k+1} = y_k - \lambda B(y_k) + \lambda B(x_k).$

Then (x_n) and (y_n) both converge weakly to a point $x \in (A + B)^{-1}(0)$.

- Requires one backward and two forward evaluations per iteration.
- Maximum stepsize is half that of the forward-backward algorithm.
- Fejér monotone. In fact, (x_k) satisfies

$$||x_{k+1} - x||^{2} + \epsilon ||x_{k} - y_{k}||^{2} \le ||x_{k} - x||^{2}.$$

• Variant of Tseng's method studied by Combettes-Pesquet 2012. Another approaches to the same problem:

- Eckstein–Johnstone 2019 Projective splitting w/forward steps.
- Bang Cong Vu's talk from yesterday.

Theorem (Malitsky–T.)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{2L})$, and set

$$x_{k+1} = J_{\lambda A} \big(x_k - 2\lambda B(x_k) + \lambda B(x_{k-1}) \big). \tag{1}$$

Then $(x_k)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in (A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when B is locally Lipschitz. (1) becomes:

 $x_{k+1} = J_{\lambda A} \big(x_k - (\lambda_k + \lambda_{k-1}) B(x_k) + \lambda_{k-1} B(x_{k-1}) \big).$

Theorem (Malitsky–T.)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{2L})$, and set

$$x_{k+1} = J_{\lambda A} \big(x_k - 2\lambda B(x_k) + \lambda B(x_{k-1}) \big). \tag{1}$$

Then $(x_k)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in (A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when *B* is locally Lipschitz. (1) becomes:

 $x_{k+1} = J_{\lambda A} \big(x_k - (\lambda_k + \lambda_{k-1}) B(x_k) + \lambda_{k-1} B(x_{k-1}) \big).$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ Ξ · りへで 10/17

Theorem (Malitsky–T.)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{2L})$, and set

$$x_{k+1} = J_{\lambda A} \big(x_k - 2\lambda B(x_k) + \lambda B(x_{k-1}) \big). \tag{1}$$

Then $(x_k)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in (A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when B is locally Lipschitz. (1) becomes:

$$x_{k+1} = J_{\lambda A} \big(x_k - (\lambda_k + \lambda_{k-1}) B(x_k) + \lambda_{k-1} B(x_{k-1}) \big).$$

Theorem (Malitsky–T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz with $(A + B)^{-1}(0) \neq \emptyset$. Let $\lambda \in (0, \frac{1}{2L})$. Given $x_0 \in \mathcal{H}$, define the sequence $(x_k)_{k \in \mathbb{N}}$ according to

 $x_{k+1} = J_{\lambda A} (x_k - 2\lambda B(x_k) + \lambda B(x_{k-1})) \quad \forall k \in \mathbb{N}.$

Then $(x_k)_{k\in\mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

Proof sketch. Let $x \in (A+B)^{-1}(0)$ and consider $(\varphi_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ given by

$$arphi_k := \|x_k - x\|^2 + 2\lambda \langle B(x_k) - B(x_{k-1}), x - x_k
angle + rac{1}{2} \|x_k - x_{k-1}\|^2.$$

Then $\varphi_k \geq \frac{1}{2} \|x_k - x\|^2$ and there exists an $\varepsilon > 0$ such that

$$\varphi_{k+1} + \varepsilon \left\| x_{k+1} - x_k \right\|^2 \le \varphi_k.$$

Theorem (Malitsky–T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz with $(A + B)^{-1}(0) \neq \emptyset$. Let $\lambda \in (0, \frac{1}{2L})$. Given $x_0 \in \mathcal{H}$, define the sequence $(x_k)_{k \in \mathbb{N}}$ according to

 $x_{k+1} = J_{\lambda A} (x_k - 2\lambda B(x_k) + \lambda B(x_{k-1})) \quad \forall k \in \mathbb{N}.$

Then $(x_k)_{k \in \mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

Proof sketch. Let $x \in (A + B)^{-1}(0)$ and consider $(\varphi_k)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ given by

$$arphi_k := \|x_k - x\|^2 + 2\lambda \langle B(x_k) - B(x_{k-1}), x - x_k
angle + rac{1}{2} \|x_k - x_{k-1}\|^2.$$

Then $\varphi_k \geq \frac{1}{2} \|x_k - x\|^2$ and there exists an $\varepsilon > 0$ such that

$$\varphi_{k+1} + \varepsilon \left\| x_{k+1} - x_k \right\|^2 \le \varphi_k.$$

Are Larger Stepsizes Always Better?

Consider the monotone inclusion

 $0 \in (A+B)(x) \subseteq \mathbb{R}^n \times \mathbb{R}^n$,

where $A(x_1, x_2) = (0, 0)$ and $B(x_1, x_2) = (x_2, -x_1)$. Then:

- Zero is the unique solution of the problem.
- *B* is 1-Lipschitz and monotone, but not cocoercive.

• Tseng's method: For $\lambda \in (0, 1)$, converges Q-linearly with rate

$$\rho(\lambda) := \sqrt{1 - \lambda^2 + \lambda^4} < 1.$$

Thus, best convergence rate is $\rho(\lambda) = \sqrt{3}/2$ with $\lambda = 1/\sqrt{2}$. • FoRB: For $\lambda \approx 1/2$, converges with rate given by $\rho(\lambda) \approx \sqrt{2}/2$.

Larger stepsizes are **not** necessarily better.

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{3L})$ and set

$$x_{k+1} = J_{\lambda A}(x_k - \lambda B(x_k)) - \lambda (B(x_k) - B(x_{k-1})).$$

Then $(x_k)_{k\in\mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- Open question: How to incorporate a linesearch procedure?

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{3I})$ and set

$$x_{k+1} = J_{\lambda A}(x_k - \lambda B(x_k)) - \lambda (B(x_k) - B(x_{k-1})).$$

Then $(x_k)_{k \in \mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- Open question: How to incorporate a linesearch procedure?

Shadow Douglas-Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz with $(A + B)^{-1}(0) \neq \emptyset$. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{3L})$ and set

$$x_{k+1} = J_{\lambda A}(x_k - \lambda B(x_k)) - \lambda (B(x_k) - B(x_{k-1})).$$

Then $(x_k)_{k\in\mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

Proof sketch. Let $x \in (A + B)^{-1}$. Set $y_k = \lambda B(x_k)$ and $y = \lambda B(x)$. Then

$$\begin{split} \|(x_{k+1}+y_k)-(x+y)\|^2 &+ \left(\frac{1}{3}+\epsilon\right)\|x_{k+1}-x_k\|^2\\ &\leq \|(x_k+y_{k-1})-(x+y)\|^2 + \frac{1}{3}\|x_k-x_{k-1}\|^2. \end{split}$$

(ロ) (日) (日) (日) (日) (日) (14/17)

Shadow Douglas-Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)

Let $A : \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B : \mathcal{H} \rightarrow \mathcal{H}$ be monotone and *L*-Lipschitz with $(A + B)^{-1}(0) \neq \emptyset$. Let $x_0, x_{-1} \in \mathcal{H}$, let $\lambda \in (0, \frac{1}{3L})$ and set

$$x_{k+1} = J_{\lambda A}(x_k - \lambda B(x_k)) - \lambda (B(x_k) - B(x_{k-1})).$$

Then $(x_k)_{k\in\mathbb{N}}$ converges weakly to some $\overline{x} \in \mathcal{H}$ such that $0 \in (A+B)(\overline{x})$.

Proof sketch. Let $x \in (A + B)^{-1}$. Set $y_k = \lambda B(x_k)$ and $y = \lambda B(x)$. Then

$$\begin{split} \|(x_{k+1}+y_k)-(x+y)\|^2 + \left(\frac{1}{3}+\epsilon\right)\|x_{k+1}-x_k\|^2 \\ &\leq \|(x_k+y_{k-1})-(x+y)\|^2 + \frac{1}{3}\|x_k-x_{k-1}\|^2. \end{split}$$

(ロ) (日) (日) (日) (日) (日) (14/17)

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
 (S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t).$

Discretising with $\dot{x}(t) = x_{k+1} - x_k$ and $\dot{y}(t) = y_{k+1} - y_k$ gives

$$x_{k+1} = J_{\lambda A}(x_t - y_k) - (y_{k+1} - y_k),$$

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
 (S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t).$

Discretising with $\dot{x}(t) = x_{k+1} - x_k$ and $\dot{y}(t) = y_{k+1} - y_k$ gives

$$x_{k+1} = J_{\lambda A}(x_t - y_k) - (y_{k+1} - y_k),$$

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
(S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t)$.

Discretising with
$$\dot{x}(t) = x_{k+1} - x_k$$
 and $\dot{y}(t) = y_{k+1} - y_k$ gives

$$x_{k+1} = J_{\lambda A}(x_t - y_k) - (y_{k+1} - y_k),$$

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
(S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t)$.

Discretising with $\dot{x}(t) = x_{k+1} - x_k$ and $\dot{y}(t) = y_{k+1} - y_k$ gives

$$x_{k+1}=J_{\lambda A}(x_t-y_k)-(y_{k+1}-y_k),$$

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
(S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t)$.

Discretising with $\dot{x}(t) = x_{k+1} - x_k$ and $\dot{y}(t) = y_k - y_{k-1}$ gives

$$x_{k+1} = J_{\lambda A}(x_t - y_k) - (y_k - y_{k-1})$$

$$z_{k+1} = z_k + J_{\lambda A}(2J_{\lambda B}(z_k) - z_k) - J_{\lambda B}(z_k).$$

Substitute $z(t) = z_k$ and $\dot{z}(t) = z_{k+1} - z_k$, gives the dynamical system

$$\dot{z}(t) = J_{\lambda A}(2J_{\lambda B}(z(t)) - z(t)) - J_{\lambda B}(z(t)). \tag{DR}$$

Express in terms of the shadow trajectory " $x(t) = J_{\lambda B}(z(t))$ ":

$$\begin{cases} \dot{x}(t) = J_{\lambda A}(x(t) - y(t)) - x(t) - \dot{y}(t), \\ y(t) = \lambda B(x(t)), \end{cases}$$
(S-DR)

where we note that $x(t) = (I + \lambda B)^{-1}(z(t)) \iff x(t) + y(t) = z(t)$.

Discretising with $\dot{x}(t) = x_{k+1} - x_k$ and $\dot{y}(t) = y_k - y_{k-1}$ gives

$$x_{k+1} = J_{\lambda A}(x_t - y_k) - (y_k - y_{k-1}),$$

which is exactly the iteration from the previous slide.

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial g(x)\\\partial f(y) \end{pmatrix}}_{A(z)} + \underbrace{\begin{pmatrix} \nabla_x \Phi(x,y)\\-\nabla_y \Phi(x,y) \end{pmatrix}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}.$$

Applying the forward reflected backward method yields

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\lambda g} (x_k - 2\lambda \nabla_x \Phi(x_k, y_k) + \lambda \nabla_x \Phi(x_k, y_k)) \\ y_{k+1} = \operatorname{prox}_{\lambda f} (y_k + 2\lambda \nabla_y \Phi(x_k, y_k) - \lambda \nabla_y \Phi(x_k, y_k)). \end{cases}$$

In the case when f = g = 0, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial g(x)\\\partial f(y) \end{pmatrix}}_{A(z)} + \underbrace{\begin{pmatrix} \nabla_x \Phi(x,y)\\-\nabla_y \Phi(x,y) \end{pmatrix}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}.$$

Applying the forward reflected backward method yields

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\lambda g} (x_k - 2\lambda \nabla_x \Phi(x_k, y_k) + \lambda \nabla_x \Phi(x_k, y_k)) \\ y_{k+1} = \operatorname{prox}_{\lambda f} (y_k + 2\lambda \nabla_y \Phi(x_k, y_k) - \lambda \nabla_y \Phi(x_k, y_k)) \end{cases}$$

In the case when f = g = 0, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$\begin{pmatrix} 0\\0 \end{pmatrix} \in \underbrace{\begin{pmatrix} \partial g(x)\\\partial f(y) \end{pmatrix}}_{A(z)} + \underbrace{\begin{pmatrix} \nabla_x \Phi(x,y)\\-\nabla_y \Phi(x,y) \end{pmatrix}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}.$$

Applying the forward reflected backward method yields

$$\begin{cases} x_{k+1} = \operatorname{prox}_{\lambda g} (x_k - 2\lambda \nabla_x \Phi(x_k, y_k) + \lambda \nabla_x \Phi(x_k, y_k)) \\ y_{k+1} = \operatorname{prox}_{\lambda f} (y_k + 2\lambda \nabla_y \Phi(x_k, y_k) - \lambda \nabla_y \Phi(x_k, y_k)) \end{cases}$$

In the case when f = g = 0, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

Concluding Remarks

- Two simple modification of the forward-backward algorithm allows for the assumption of cocoercivity to avoided.
- Only require one evaluation of *B* per iteration (Tseng needs two).

Open questions and directions for further reserach:

- Do there exist a useful fixed point interpretation of the methods?
- Is there a continuous dynamical system associated with the FoRB?
- Can a linesearch be incorporated into the shadow DR method?

- A forward-backward splitting method for monotone inclusions without cocoercivity with Y. Malitsky. arXiv:1808.04162.
- Shadow Douglas-Rachford splitting for monotone inclusions with E.R. Csetnek and Malitsky. Appl Math & Optim, p. 1–14, 2019.