
1/17

Splitting Algorithms with Forward Steps

Matthew K. Tam

Institute for Numerical and Applied Mathematics
Georg-August-Universität Göttingen

ICCOPT, August 4-8, 2019



2/17

Splitting Algorithms with Forward Steps

Joint work with Robert Csetnek and Yura Malitsky



3/17

Proximal Gradient Descent

Consider the minimisation problem

min
x∈H

f (x) + g(x),

where:
g : H → (−∞,+∞] is proper, lsc and convex, and
f : H → R is convex with L-Lipschitz gradient ∇f .

Solutions characterised by the first order optimality condition:

0 ∈ (A + B)(x) where A := ∂g and B := ∇f .

Can be solved using proximal gradient descent with λ ∈ (0, 2/L):

xn+1 := proxλg (xk − λ∇f (xk)) ∀n ∈ N.



3/17

Proximal Gradient Descent

Consider the minimisation problem

min
x∈H

f (x) + g(x),

where:
g : H → (−∞,+∞] is proper, lsc and convex, and
f : H → R is convex with L-Lipschitz gradient ∇f .

Solutions characterised by the first order optimality condition:

0 ∈ (A + B)(x) where A := ∂g and B := ∇f .

Can be solved using proximal gradient descent with λ ∈ (0, 2/L):

xn+1 := proxλg (xk − λ∇f (xk)) ∀n ∈ N.



4/17

The Forward-Backward Method

Abstracted to the framework of monotone operators, the previous
minimisation problem becomes the monotone inclusion:

find x ∈ H such that 0 ∈ (A + B)(x),

where:
A : H⇒ H is maximally monotone, and
B : H → H is monotone and L-Lipschitz continuous.

Proximal gradient generalises to the forward-backward algorithm:

xk+1 := JλA(xk − λB(xk)),

where JλA := (I + λA)−1 is the resolvent of the monotone operator λA.



5/17

The Forward-Backward Method
The standard proof of the forward-backward algorithm requires:

A = NC and B = ∇f are both (maximal) monotone operators:

〈x − u, y − v〉 ≥ 0 ∀y ∈ A(x),∀v ∈ A(u).

B = ∇f is β-cocoercive (equiv. B−1 is strongly monotone):

〈x − y ,Bx − By〉 ≥ β‖Bx − By‖2,

which implies B is 1
β -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)
Let f : H → R be a Fréchet differentiable convex function and let L > 0.
Then ∇f is L-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

? Proximal gradient descent converges when B = ∇f is L-Lipschitz
because, in this case, the operator B is actually 1

L -cocoercive!
If B is merely Lipschitz need (for instance):

Chen–Rockafellar 1997 – A+ B is strongly monotone.
Bello Cruz–Días Millán 2015 – Backtracking procedure.



5/17

The Forward-Backward Method
The standard proof of the forward-backward algorithm requires:

A = NC and B = ∇f are both (maximal) monotone operators:

〈x − u, y − v〉 ≥ 0 ∀y ∈ A(x),∀v ∈ A(u).

B = ∇f is β-cocoercive (equiv. B−1 is strongly monotone):

〈x − y ,Bx − By〉 ≥ β‖Bx − By‖2,

which implies B is 1
β -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)
Let f : H → R be a Fréchet differentiable convex function and let L > 0.
Then ∇f is L-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

? Proximal gradient descent converges when B = ∇f is L-Lipschitz
because, in this case, the operator B is actually 1

L -cocoercive!
If B is merely Lipschitz need (for instance):

Chen–Rockafellar 1997 – A+ B is strongly monotone.
Bello Cruz–Días Millán 2015 – Backtracking procedure.



5/17

The Forward-Backward Method
The standard proof of the forward-backward algorithm requires:

A = NC and B = ∇f are both (maximal) monotone operators:

〈x − u, y − v〉 ≥ 0 ∀y ∈ A(x),∀v ∈ A(u).

B = ∇f is β-cocoercive (equiv. B−1 is strongly monotone):

〈x − y ,Bx − By〉 ≥ β‖Bx − By‖2,

which implies B is 1
β -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)
Let f : H → R be a Fréchet differentiable convex function and let L > 0.
Then ∇f is L-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

? Proximal gradient descent converges when B = ∇f is L-Lipschitz
because, in this case, the operator B is actually 1

L -cocoercive!
If B is merely Lipschitz need (for instance):

Chen–Rockafellar 1997 – A+ B is strongly monotone.
Bello Cruz–Días Millán 2015 – Backtracking procedure.



5/17

The Forward-Backward Method
The standard proof of the forward-backward algorithm requires:

A = NC and B = ∇f are both (maximal) monotone operators:

〈x − u, y − v〉 ≥ 0 ∀y ∈ A(x),∀v ∈ A(u).

B = ∇f is β-cocoercive (equiv. B−1 is strongly monotone):

〈x − y ,Bx − By〉 ≥ β‖Bx − By‖2,

which implies B is 1
β -Lipschitz. The converse is not true in general.

Theorem (Baillon–Haddad)
Let f : H → R be a Fréchet differentiable convex function and let L > 0.
Then ∇f is L-Lipschitz continuous if and only if ∇f is (1/L)-cocoercive.

? Proximal gradient descent converges when B = ∇f is L-Lipschitz
because, in this case, the operator B is actually 1

L -cocoercive!
If B is merely Lipschitz need (for instance):

Chen–Rockafellar 1997 – A+ B is strongly monotone.
Bello Cruz–Días Millán 2015 – Backtracking procedure.



6/17

Nonsmooth Convex Minimisation

Consider the minimisation problem

min
x∈H

f (x) + g(Kx),

where:
f , g : H → (−∞,+∞] are proper, lsc and convex.
K : H → H is a linear, bounded operator with adjoint K∗.

Using Fenchel duality, this can be cast as “0 ∈ (A + B)(z)” with

(
0
0

)
∈

[∂g 0
0 ∂f ∗

]
︸ ︷︷ ︸

A

+

[
0 K∗

−K 0

]
︸ ︷︷ ︸

B

(xy
)

︸︷︷︸
z

⊆ H×H.

The operator B is ‖K‖-Lipschitz continuous but not cocoercive.



6/17

Nonsmooth Convex Minimisation

Consider the minimisation problem

min
x∈H

f (x) + g(Kx),

where:
f , g : H → (−∞,+∞] are proper, lsc and convex.
K : H → H is a linear, bounded operator with adjoint K∗.

Using Fenchel duality, this can be cast as “0 ∈ (A + B)(z)” with

(
0
0

)
∈

[∂g 0
0 ∂f ∗

]
︸ ︷︷ ︸

A

+

[
0 K∗

−K 0

]
︸ ︷︷ ︸

B

(xy
)

︸︷︷︸
z

⊆ H×H.

The operator B is ‖K‖-Lipschitz continuous but not cocoercive.



6/17

Nonsmooth Convex Minimisation

Consider the minimisation problem

min
x∈H

f (x) + g(Kx),

where:
f , g : H → (−∞,+∞] are proper, lsc and convex.
K : H → H is a linear, bounded operator with adjoint K∗.

Using Fenchel duality, this can be cast as “0 ∈ (A + B)(z)” with

(
0
0

)
∈

[∂g 0
0 ∂f ∗

]
︸ ︷︷ ︸

A

+

[
0 K∗

−K 0

]
︸ ︷︷ ︸

B

(xy
)

︸︷︷︸
z

⊆ H×H.

The operator B is ‖K‖-Lipschitz continuous but not cocoercive.



7/17

Saddle Point Problems

Consider the saddle point problem

min
x∈H

max
y∈H

g(x) + Φ(x , y)− f (y),

where:
f , g : H → (−∞,+∞] are proper, lsc and convex.
Φ: H×H → R is convex-concave with Lipschitz gradient.

First-order optimality condition yields “0 ∈ (A + B)(z)” with(
0
0

)
∈
(
∂g(x)

∂f (y)

)
︸ ︷︷ ︸

A(z)

+

(
∇xΦ(x , y)

−∇yΦ(x , y)

)
︸ ︷︷ ︸

B(z)

⊆ H×H.

Again, the operator B is Lipschitz but not cocoercive.



7/17

Saddle Point Problems

Consider the saddle point problem

min
x∈H

max
y∈H

g(x) + Φ(x , y)− f (y),

where:
f , g : H → (−∞,+∞] are proper, lsc and convex.
Φ: H×H → R is convex-concave with Lipschitz gradient.

First-order optimality condition yields “0 ∈ (A + B)(z)” with(
0
0

)
∈
(
∂g(x)

∂f (y)

)
︸ ︷︷ ︸

A(z)

+

(
∇xΦ(x , y)

−∇yΦ(x , y)

)
︸ ︷︷ ︸

B(z)

⊆ H×H.

Again, the operator B is Lipschitz but not cocoercive.



8/17

Forward-backward Splitting with Cocoercivity

In summary:

Cocoercivity? Lipschitz?
Smooth + nonsmooth minimisation 3 3
Nonsmooth + nonsmooth minimisation 7 3
Saddle point problems 7 3

Goal: Splitting algorithms that:
Only use JλA (backward step) and B (forward step).
Converge when B is Lipschitz (but not necessarily cocoercive).



9/17

Operator Splitting without Cocoercivity
Theorem (Tseng 2000)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0 ∈ H, let λ ∈ (0, 1

L ), and set

yk = JλA(xk − λB(xk))

xk+1 = yk − λB(yk) + λB(xk).

Then (xn) and (yn) both converge weakly to a point x ∈ (A + B)−1(0).

Requires one backward and two forward evaluations per iteration.
Maximum stepsize is half that of the forward-backward algorithm.
Fejér monotone. In fact, (xk) satisfies

‖xk+1 − x‖2 + ε ‖xk − yk‖2 ≤ ‖xk − x‖2 .

Variant of Tseng’s method studied by Combettes–Pesquet 2012.

Another approaches to the same problem:
Eckstein–Johnstone 2019 – Projective splitting w/forward steps.
Bang Cong Vu’s talk from yesterday.



9/17

Operator Splitting without Cocoercivity
Theorem (Tseng 2000)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0 ∈ H, let λ ∈ (0, 1

L ), and set

yk = JλA(xk − λB(xk))

xk+1 = yk − λB(yk) + λB(xk).

Then (xn) and (yn) both converge weakly to a point x ∈ (A + B)−1(0).

Requires one backward and two forward evaluations per iteration.
Maximum stepsize is half that of the forward-backward algorithm.
Fejér monotone. In fact, (xk) satisfies

‖xk+1 − x‖2 + ε ‖xk − yk‖2 ≤ ‖xk − x‖2 .

Variant of Tseng’s method studied by Combettes–Pesquet 2012.

Another approaches to the same problem:
Eckstein–Johnstone 2019 – Projective splitting w/forward steps.
Bang Cong Vu’s talk from yesterday.



10/17

Forward-Reflected-Backward Splitting

Theorem (Malitsky–T.)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

2L

)
, and set

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
. (1)

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Converges under the exact same assumptions as Tseng’s method.
Requires one backward and one forward evaluation per iteration.
The maximal permissible stepsize is half that of Tseng’s method.
Linesearch procedure when B is locally Lipschitz. (1) becomes:

xk+1 = JλA
(
xk − (λk + λk−1)B(xk) + λk−1B(xk−1)

)
.



10/17

Forward-Reflected-Backward Splitting

Theorem (Malitsky–T.)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

2L

)
, and set

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
. (1)

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Converges under the exact same assumptions as Tseng’s method.
Requires one backward and one forward evaluation per iteration.
The maximal permissible stepsize is half that of Tseng’s method.
Linesearch procedure when B is locally Lipschitz. (1) becomes:

xk+1 = JλA
(
xk − (λk + λk−1)B(xk) + λk−1B(xk−1)

)
.



10/17

Forward-Reflected-Backward Splitting

Theorem (Malitsky–T.)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

2L

)
, and set

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
. (1)

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Converges under the exact same assumptions as Tseng’s method.
Requires one backward and one forward evaluation per iteration.
The maximal permissible stepsize is half that of Tseng’s method.
Linesearch procedure when B is locally Lipschitz. (1) becomes:

xk+1 = JλA
(
xk − (λk + λk−1)B(xk) + λk−1B(xk−1)

)
.



11/17

Forward-Reflected-Backward Splitting

Theorem (Malitsky–T.)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz with (A + B)−1(0) 6= ∅. Let λ ∈

(
0, 1

2L

)
. Given x0 ∈ H,

define the sequence (xk)k∈N according to

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
∀k ∈ N.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Proof sketch. Let x ∈ (A + B)−1(0) and consider (ϕk)k∈N ⊆ R given by

ϕk := ‖xk − x‖2 + 2λ 〈B(xk)− B(xk−1), x − xk〉+
1
2
‖xk − xk−1‖2.

Then ϕk ≥ 1
2 ‖xk − x‖2 and there exists an ε > 0 such that

ϕk+1 + ε ‖xk+1 − xk‖2 ≤ ϕk .



11/17

Forward-Reflected-Backward Splitting

Theorem (Malitsky–T.)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz with (A + B)−1(0) 6= ∅. Let λ ∈

(
0, 1

2L

)
. Given x0 ∈ H,

define the sequence (xk)k∈N according to

xk+1 = JλA
(
xk − 2λB(xk) + λB(xk−1)

)
∀k ∈ N.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Proof sketch. Let x ∈ (A + B)−1(0) and consider (ϕk)k∈N ⊆ R given by

ϕk := ‖xk − x‖2 + 2λ 〈B(xk)− B(xk−1), x − xk〉+
1
2
‖xk − xk−1‖2.

Then ϕk ≥ 1
2 ‖xk − x‖2 and there exists an ε > 0 such that

ϕk+1 + ε ‖xk+1 − xk‖2 ≤ ϕk .



12/17

Are Larger Stepsizes Always Better?

Consider the monotone inclusion

0 ∈ (A + B)(x) ⊆ Rn × Rn,

where A(x1, x2) = (0, 0) and B(x1, x2) = (x2,−x1). Then:
Zero is the unique solution of the problem.
B is 1-Lipschitz and monotone, but not cocoercive.

Tseng’s method: For λ ∈ (0, 1), converges Q-linearly with rate

ρ(λ) :=
√

1− λ2 + λ4 < 1.

Thus, best convergence rate is ρ(λ) =
√
3/2 with λ = 1/

√
2.

FoRB: For λ ≈ 1/2, converges with rate given by ρ(λ) ≈
√
2/2.

Larger stepsizes are not necessarily better.



13/17

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

3L

)
and set

xk+1 = JλA
(
xk − λB(xk)

)
− λ
(
B(xk)− B(xk−1)

)
.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Converges under the exact same assumptions as Tseng’s method.
Requires one backward and one forward evaluation per iteration.
Open question: How to incorporate a linesearch procedure?



13/17

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

3L

)
and set

xk+1 = JλA
(
xk − λB(xk)

)
− λ
(
B(xk)− B(xk−1)

)
.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Converges under the exact same assumptions as Tseng’s method.
Requires one backward and one forward evaluation per iteration.
Open question: How to incorporate a linesearch procedure?



14/17

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz with (A + B)−1(0) 6= ∅. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

3L

)
and set

xk+1 = JλA
(
xk − λB(xk)

)
− λ
(
B(xk)− B(xk−1)

)
.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Proof sketch. Let x ∈ (A + B)−1. Set yk = λB(xk) and y = λB(x).
Then

‖(xk+1 + yk)− (x + y)‖2 +

(
1
3

+ ε

)
‖xk+1 − xk‖2

≤ ‖(xk + yk−1)− (x + y)‖2 +
1
3
‖xk − xk−1‖2 .



14/17

Shadow Douglas–Rachford Splitting

Theorem (Csetnek–Malitsky–T. 2019)
Let A : H⇒ H be maximally monotone and B : H → H be monotone
and L-Lipschitz with (A + B)−1(0) 6= ∅. Let x0, x−1 ∈ H, let λ ∈

(
0, 1

3L

)
and set

xk+1 = JλA
(
xk − λB(xk)

)
− λ
(
B(xk)− B(xk−1)

)
.

Then (xk)k∈N converges weakly to some x ∈ H such that 0 ∈ (A+B)(x).

Proof sketch. Let x ∈ (A + B)−1. Set yk = λB(xk) and y = λB(x).
Then

‖(xk+1 + yk)− (x + y)‖2 +

(
1
3

+ ε

)
‖xk+1 − xk‖2

≤ ‖(xk + yk−1)− (x + y)‖2 +
1
3
‖xk − xk−1‖2 .



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk+1 − yk gives

xk+1 = JλA(xt − yk)− (yk+1 − yk),

which is exactly the iteration from the previous slide.



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk+1 − yk gives

xk+1 = JλA(xt − yk)− (yk+1 − yk),

which is exactly the iteration from the previous slide.



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk+1 − yk gives

xk+1 = JλA(xt − yk)− (yk+1 − yk),

which is exactly the iteration from the previous slide.



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk+1 − yk gives

xk+1 = JλA(xt − yk)− (yk+1 − yk),

which is exactly the iteration from the previous slide.



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk − yk−1 gives

xk+1 = JλA(xt − yk)− (yk − yk−1),

which is exactly the iteration from the previous slide.



15/17

Shadow Douglas–Rachford Splitting
Douglas–Rachford splitting for “0 ∈ (A + B)(z)”:

zk+1 = zk + JλA(2JλB(zk)− zk)− JλB(zk).

Substitute z(t) = zk and ż(t) = zk+1 − zk , gives the dynamical system

ż(t) = JλA(2JλB(z(t))− z(t))− JλB(z(t)). (DR)

Express in terms of the shadow trajectory “x(t) = JλB(z(t))”:{
ẋ(t) = JλA(x(t)− y(t))− x(t)− ẏ(t),

y(t) = λB(x(t)),
(S-DR)

where we note that x(t) = (I + λB)−1(z(t)) ⇐⇒ x(t) + y(t) = z(t).

Discretising with ẋ(t) = xk+1 − xk and ẏ(t) = yk − yk−1 gives

xk+1 = JλA(xt − yk)− (yk − yk−1),

which is exactly the iteration from the previous slide.



16/17

An Application: Optimistic Gradient Descent Ascent
Recall, the inclusion associated with the saddle point problem:(

0
0

)
∈
(
∂g(x)

∂f (y)

)
︸ ︷︷ ︸

A(z)

+

(
∇xΦ(x , y)

−∇yΦ(x , y)

)
︸ ︷︷ ︸

B(z)

⊆ H×H.

Applying the forward reflected backward method yields{
xk+1 = proxλg

(
xk − 2λ∇xΦ(xk , yk) + λ∇xΦ(xk , yk)

)
yk+1 = proxλf

(
yk + 2λ∇yΦ(xk , yk)− λ∇yΦ(xk , yk)

)
.

In the case when f = g = 0, FoRB spltting:
Coincides with the shadow Douglas–Rachford method.
Coincides with optimistic gradient descent ascent (OGDA) method
from ML used for training generative adverserial networks (GANs)
(Daskalaski et al, 2018).



16/17

An Application: Optimistic Gradient Descent Ascent
Recall, the inclusion associated with the saddle point problem:(

0
0

)
∈
(
∂g(x)

∂f (y)

)
︸ ︷︷ ︸

A(z)

+

(
∇xΦ(x , y)

−∇yΦ(x , y)

)
︸ ︷︷ ︸

B(z)

⊆ H×H.

Applying the forward reflected backward method yields{
xk+1 = proxλg

(
xk − 2λ∇xΦ(xk , yk) + λ∇xΦ(xk , yk)

)
yk+1 = proxλf

(
yk + 2λ∇yΦ(xk , yk)− λ∇yΦ(xk , yk)

)
.

In the case when f = g = 0, FoRB spltting:
Coincides with the shadow Douglas–Rachford method.
Coincides with optimistic gradient descent ascent (OGDA) method
from ML used for training generative adverserial networks (GANs)
(Daskalaski et al, 2018).



16/17

An Application: Optimistic Gradient Descent Ascent
Recall, the inclusion associated with the saddle point problem:(

0
0

)
∈
(
∂g(x)

∂f (y)

)
︸ ︷︷ ︸

A(z)

+

(
∇xΦ(x , y)

−∇yΦ(x , y)

)
︸ ︷︷ ︸

B(z)

⊆ H×H.

Applying the forward reflected backward method yields{
xk+1 = proxλg

(
xk − 2λ∇xΦ(xk , yk) + λ∇xΦ(xk , yk)

)
yk+1 = proxλf

(
yk + 2λ∇yΦ(xk , yk)− λ∇yΦ(xk , yk)

)
.

In the case when f = g = 0, FoRB spltting:
Coincides with the shadow Douglas–Rachford method.
Coincides with optimistic gradient descent ascent (OGDA) method
from ML used for training generative adverserial networks (GANs)
(Daskalaski et al, 2018).



17/17

Concluding Remarks

Two simple modification of the forward-backward algorithm allows
for the assumption of cocoercivity to avoided.
Only require one evaluation of B per iteration (Tseng needs two).

Open questions and directions for further reserach:
Do there exist a useful fixed point interpretation of the methods?
Is there a continuous dynamical system associated with the FoRB?
Can a linesearch be incorporated into the shadow DR method?

A forward-backward splitting method for monotone inclusions
without cocoercivity with Y. Malitsky. arXiv:1808.04162.

Shadow Douglas-Rachford splitting for monotone inclusions
with E.R. Csetnek and Malitsky. Appl Math & Optim, p. 1–14, 2019.

http://arxiv.org/abs/1808.04162

