Splitting Algorithms with Forward Steps

Matthew K. Tam
Institute for Numerical and Applied Mathematics
Georg-August-Universität Göttingen

ICCOPT, August 4-8, 2019

Splitting Algorithms with Forward Steps

Joint work with Robert Csetnek and Yura Malitsky

Proximal Gradient Descent

Consider the minimisation problem

$$
\min _{x \in \mathcal{H}} f(x)+g(x)
$$

where:

- $g: \mathcal{H} \rightarrow(-\infty,+\infty]$ is proper, Isc and convex, and
- $f: \mathcal{H} \rightarrow \mathbb{R}$ is convex with L-Lipschitz gradient ∇f.
- Solutions characterised by the first order optimality condition: $0 \in(A+B)(x)$ where $A:=\partial g$ and $B:=\nabla f$.
- Can be solved using proximal gradient descent with $\lambda \in(0,2 / L)$:

$$
x_{n+1}:=\operatorname{prox}_{\lambda g}\left(x_{k}-\lambda \nabla f\left(x_{k}\right)\right)
$$

Proximal Gradient Descent

Consider the minimisation problem

$$
\min _{x \in \mathcal{H}} f(x)+g(x)
$$

where:

- $g: \mathcal{H} \rightarrow(-\infty,+\infty]$ is proper, Isc and convex, and
- $f: \mathcal{H} \rightarrow \mathbb{R}$ is convex with L-Lipschitz gradient ∇f.
- Solutions characterised by the first order optimality condition:

$$
0 \in(A+B)(x) \text { where } A:=\partial g \text { and } B:=\nabla f
$$

- Can be solved using proximal gradient descent with $\lambda \in(0,2 / L)$:

$$
x_{n+1}:=\operatorname{prox}_{\lambda g}\left(x_{k}-\lambda \nabla f\left(x_{k}\right)\right) \quad \forall n \in \mathbb{N} .
$$

The Forward-Backward Method

Abstracted to the framework of monotone operators, the previous minimisation problem becomes the monotone inclusion:

$$
\text { find } x \in \mathcal{H} \text { such that } 0 \in(A+B)(x)
$$

where:

- $A: \mathcal{H} \rightrightarrows \mathcal{H}$ is maximally monotone, and
- $B: \mathcal{H} \rightarrow \mathcal{H}$ is monotone and L-Lipschitz continuous.

Proximal gradient generalises to the forward-backward algorithm:

$$
x_{k+1}:=J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right),
$$

where $J_{\lambda A}:=(I+\lambda A)^{-1}$ is the resolvent of the monotone operator λA.

The Forward-Backward Method

The standard proof of the forward-backward algorithm requires:

- $A=N_{C}$ and $B=\nabla f$ are both (maximal) monotone operators:

$$
\langle x-u, y-v\rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u) .
$$

- $B=\nabla f$ is β-cocoercive (equiv. B^{-1} is strongly monotone):

$$
\langle x-y, B x-B y\rangle \geq \beta\|B x-B y\|^{2},
$$

which implies B is $\frac{1}{\beta}$-Lipschitz. The converse is not true in general.

Theorem (Bailon-Haddad)

* Proximal gradient descent converges when $B=\nabla f$ is L-Lipschitz
because, in this case, the operator B is actually $\frac{1}{L}$-cocoercive!
- If B is merely Lipschitz need (for instance)
- Chen-Rockafellar $1997-A+B$ is strongly monotone.
- Bello Cruz-Días Millán 2015 - Backtracking procedure

The Forward-Backward Method

The standard proof of the forward-backward algorithm requires:

- $A=N_{C}$ and $B=\nabla f$ are both (maximal) monotone operators:

$$
\langle x-u, y-v\rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u) .
$$

- $B=\nabla f$ is β-cocoercive (equiv. B^{-1} is strongly monotone):

$$
\langle x-y, B x-B y\rangle \geq \beta\|B x-B y\|^{2}
$$

which implies B is $\frac{1}{\beta}$-Lipschitz. The converse is not true in general.

Theorem (Baillon-Haddad)

Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a Fréchet differentiable convex function and let $L>0$. Then ∇f is L-Lipschitz continuous if and only if ∇f is $(1 / L)$-cocoercive.

$$
\star \text { Proximal gradient descent converges when } B=\nabla f \text { is } L \text {-Lipschitz }
$$

$$
\text { because, in this case, the operator } B \text { is actually } \frac{1}{L} \text {-cocoercive! }
$$

\square
\square
\square

The Forward-Backward Method

The standard proof of the forward-backward algorithm requires:

- $A=N_{C}$ and $B=\nabla f$ are both (maximal) monotone operators:

$$
\langle x-u, y-v\rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u) .
$$

- $B=\nabla f$ is β-cocoercive (equiv. B^{-1} is strongly monotone):

$$
\langle x-y, B x-B y\rangle \geq \beta\|B x-B y\|^{2},
$$

which implies B is $\frac{1}{\beta}$-Lipschitz. The converse is not true in general.

Theorem (Baillon-Haddad)

Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a Fréchet differentiable convex function and let $L>0$. Then ∇f is L-Lipschitz continuous if and only if ∇f is $(1 / L)$-cocoercive.

* Proximal gradient descent converges when $B=\nabla f$ is L-Lipschitz because, in this case, the operator B is actually $\frac{1}{L}$-cocoercive!
- If B is merely Lipschitz need (for instance): - Chen-Rockafellar $1997-A+B$ is strongly monotone. - Bello Cruz-Días Millán 2015 - Backtracking procedure,

The Forward-Backward Method

The standard proof of the forward-backward algorithm requires:

- $A=N_{C}$ and $B=\nabla f$ are both (maximal) monotone operators:

$$
\langle x-u, y-v\rangle \geq 0 \quad \forall y \in A(x), \forall v \in A(u) .
$$

- $B=\nabla f$ is β-cocoercive (equiv. B^{-1} is strongly monotone):

$$
\langle x-y, B x-B y\rangle \geq \beta\|B x-B y\|^{2},
$$

which implies B is $\frac{1}{\beta}$-Lipschitz. The converse is not true in general.

Theorem (Baillon-Haddad)

Let $f: \mathcal{H} \rightarrow \mathbb{R}$ be a Fréchet differentiable convex function and let $L>0$. Then ∇f is L-Lipschitz continuous if and only if ∇f is $(1 / L)$-cocoercive.

* Proximal gradient descent converges when $B=\nabla f$ is L-Lipschitz because, in this case, the operator B is actually $\frac{1}{L}$-cocoercive!
- If B is merely Lipschitz need (for instance):
- Chen-Rockafellar $1997-A+B$ is strongly monotone.
- Bello Cruz-Días Millán 2015 - Backtracking procedure.

Nonsmooth Convex Minimisation

Consider the minimisation problem

$$
\min _{x \in \mathcal{H}} f(x)+g(K x)
$$

where:

- $f, g: \mathcal{H} \rightarrow(-\infty,+\infty]$ are proper, Isc and convex.
- $K: \mathcal{H} \rightarrow \mathcal{H}$ is a linear, bounded operator with adjoint K^{*}.

Using Fenchel duality, this can be cast as " $0 \in(A+B)(z)$ " with

Nonsmooth Convex Minimisation

Consider the minimisation problem

$$
\min _{x \in \mathcal{H}} f(x)+g(K x)
$$

where:

- $f, g: \mathcal{H} \rightarrow(-\infty,+\infty]$ are proper, Isc and convex.
- $K: \mathcal{H} \rightarrow \mathcal{H}$ is a linear, bounded operator with adjoint K^{*}.

Using Fenchel duality, this can be cast as " $0 \in(A+B)(z)$ " with

$$
\binom{0}{0} \in(\underbrace{\left[\begin{array}{cc}
\partial g & 0 \\
0 & \partial f^{*}
\end{array}\right]}_{A}+\underbrace{\left[\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right]}_{B}) \underbrace{\binom{x}{y} \subseteq \mathcal{H} \times \mathcal{H} . . .}_{z}
$$

Nonsmooth Convex Minimisation

Consider the minimisation problem

$$
\min _{x \in \mathcal{H}} f(x)+g(K x)
$$

where:

- $f, g: \mathcal{H} \rightarrow(-\infty,+\infty]$ are proper, Isc and convex.
- $K: \mathcal{H} \rightarrow \mathcal{H}$ is a linear, bounded operator with adjoint K^{*}.

Using Fenchel duality, this can be cast as " $0 \in(A+B)(z)$ " with

$$
\binom{0}{0} \in(\underbrace{\left[\begin{array}{cc}
\partial g & 0 \\
0 & \partial f^{*}
\end{array}\right]}_{A}+\underbrace{\left[\begin{array}{cc}
0 & K^{*} \\
-K & 0
\end{array}\right]}_{B}) \underbrace{\binom{x}{y} \subseteq \mathcal{H} \times \mathcal{H} . . .}_{z}
$$

The operator B is $\|K\|$-Lipschitz continuous but not cocoercive.

Saddle Point Problems

Consider the saddle point problem

$$
\min _{x \in \mathcal{H}} \max _{y \in \mathcal{H}} g(x)+\Phi(x, y)-f(y),
$$

where:

- $f, g: \mathcal{H} \rightarrow(-\infty,+\infty]$ are proper, Isc and convex.
- $\Phi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is convex-concave with Lipschitz gradient.

First-order optimality condition yields " $0 \in(A+B)(z)$ " with

Saddle Point Problems

Consider the saddle point problem

$$
\min _{x \in \mathcal{H}} \max _{y \in \mathcal{H}} g(x)+\Phi(x, y)-f(y),
$$

where:

- $f, g: \mathcal{H} \rightarrow(-\infty,+\infty]$ are proper, Isc and convex.
- $\Phi: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ is convex-concave with Lipschitz gradient.

First-order optimality condition yields " $0 \in(A+B)(z)$ " with

$$
\binom{0}{0} \in \underbrace{\binom{\partial g(x)}{\partial f(y)}}_{A(z)}+\underbrace{\binom{\nabla_{x} \Phi(x, y)}{-\nabla_{y} \Phi(x, y)}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H} .
$$

Again, the operator B is Lipschitz but not cocoercive.

Forward-backward Splitting with Cocoercivity

In summary:

	Cocoercivity?	Lipschitz?
Smooth + nonsmooth minimisation	\checkmark	\checkmark
Nonsmooth + nonsmooth minimisation	x	\checkmark
Saddle point problems	x	\checkmark

Goal: Splitting algorithms that:

- Only use $J_{\lambda A}$ (backward step) and B (forward step).
- Converge when B is Lipschitz (but not necessarily cocoercive).

Operator Splitting without Cocoercivity

Theorem (Tseng 2000)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{L}\right)$, and set

$$
\begin{aligned}
y_{k} & =J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right) \\
x_{k+1} & =y_{k}-\lambda B\left(y_{k}\right)+\lambda B\left(x_{k}\right) .
\end{aligned}
$$

Then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ both converge weakly to a point $x \in(A+B)^{-1}(0)$.

- Requires one backward and two forward evaluations per iteration.
- Maximum stepsize is half that of the forward-backward algorithm.
- Fejér monotone. In fact, $\left(x_{k}\right)$ satisfies

$$
\left\|x_{k+1}-x\right\|^{2}+\epsilon\left\|x_{k}-y_{k}\right\|^{2} \leq\left\|x_{k}-x\right\|^{2} .
$$

- Variant of Tseng's method studied by Combettes-Pesquet 2012.

Another approaches to the same problem:

- Eckstein-Johnstone 2019 - Projective splitting w/forward steps.
- Bang Cong Vu's talk from yesterday.

Operator Splitting without Cocoercivity

Theorem (Tseng 2000)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{L}\right)$, and set

$$
\begin{aligned}
y_{k} & =J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right) \\
x_{k+1} & =y_{k}-\lambda B\left(y_{k}\right)+\lambda B\left(x_{k}\right) .
\end{aligned}
$$

Then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ both converge weakly to a point $x \in(A+B)^{-1}(0)$.

- Requires one backward and two forward evaluations per iteration.
- Maximum stepsize is half that of the forward-backward algorithm.
- Fejér monotone. In fact, $\left(x_{k}\right)$ satisfies

$$
\left\|x_{k+1}-x\right\|^{2}+\epsilon\left\|x_{k}-y_{k}\right\|^{2} \leq\left\|x_{k}-x\right\|^{2} .
$$

- Variant of Tseng's method studied by Combettes-Pesquet 2012. Another approaches to the same problem:
- Eckstein-Johnstone 2019 - Projective splitting w/forward steps.
- Bang Cong Vu's talk from yesterday.

Forward-Reflected-Backward Splitting

Theorem (Malitsky-T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{2 L}\right)$, and set

$$
\begin{equation*}
x_{k+1}=J_{\lambda A}\left(x_{k}-2 \lambda B\left(x_{k}\right)+\lambda B\left(x_{k-1}\right)\right) . \tag{1}
\end{equation*}
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in(A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when B is locally Lipschitz. (1) becomes:

Forward-Reflected-Backward Splitting

Theorem (Malitsky-T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{2 L}\right)$, and set

$$
\begin{equation*}
x_{k+1}=J_{\lambda A}\left(x_{k}-2 \lambda B\left(x_{k}\right)+\lambda B\left(x_{k-1}\right)\right) . \tag{1}
\end{equation*}
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in(A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when B is locally Lipschitz. \qquad

Forward-Reflected-Backward Splitting

Theorem (Malitsky-T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{2 L}\right)$, and set

$$
\begin{equation*}
x_{k+1}=J_{\lambda A}\left(x_{k}-2 \lambda B\left(x_{k}\right)+\lambda B\left(x_{k-1}\right)\right) . \tag{1}
\end{equation*}
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $x \in \mathcal{H}$ such that $0 \in(A+B)(x)$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- The maximal permissible stepsize is half that of Tseng's method.
- Linesearch procedure when B is locally Lipschitz. (1) becomes:

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-\left(\lambda_{k}+\lambda_{k-1}\right) B\left(x_{k}\right)+\lambda_{k-1} B\left(x_{k-1}\right)\right)
$$

Forward-Reflected-Backward Splitting

Theorem (Malitsky-T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz with $(A+B)^{-1}(0) \neq \emptyset$. Let $\lambda \in\left(0, \frac{1}{2 L}\right)$. Given $x_{0} \in \mathcal{H}$, define the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ according to

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-2 \lambda B\left(x_{k}\right)+\lambda B\left(x_{k-1}\right)\right) \quad \forall k \in \mathbb{N} .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.

Proof sketch. Let $x \in(A+B)^{-1}(0)$ and consider $\left(\varphi_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ given by

Then $\varphi_{k} \geq \frac{1}{2}\left\|x_{k}-x\right\|^{2}$ and there exists an $\varepsilon>0$ such that

Forward-Reflected-Backward Splitting

Theorem (Malitsky-T.)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz with $(A+B)^{-1}(0) \neq \emptyset$. Let $\lambda \in\left(0, \frac{1}{2 L}\right)$. Given $x_{0} \in \mathcal{H}$, define the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ according to

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-2 \lambda B\left(x_{k}\right)+\lambda B\left(x_{k-1}\right)\right) \quad \forall k \in \mathbb{N} .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.
Proof sketch. Let $x \in(A+B)^{-1}(0)$ and consider $\left(\varphi_{k}\right)_{k \in \mathbb{N}} \subseteq \mathbb{R}$ given by

$$
\varphi_{k}:=\left\|x_{k}-x\right\|^{2}+2 \lambda\left\langle B\left(x_{k}\right)-B\left(x_{k-1}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\|x_{k}-x_{k-1}\right\|^{2} .
$$

Then $\varphi_{k} \geq \frac{1}{2}\left\|x_{k}-x\right\|^{2}$ and there exists an $\varepsilon>0$ such that

$$
\varphi_{k+1}+\varepsilon\left\|x_{k+1}-x_{k}\right\|^{2} \leq \varphi_{k} .
$$

Are Larger Stepsizes Always Better?

Consider the monotone inclusion

$$
0 \in(A+B)(x) \subseteq \mathbb{R}^{n} \times \mathbb{R}^{n},
$$

where $A\left(x_{1}, x_{2}\right)=(0,0)$ and $B\left(x_{1}, x_{2}\right)=\left(x_{2},-x_{1}\right)$. Then:

- Zero is the unique solution of the problem.
- B is 1-Lipschitz and monotone, but not cocoercive.
- Tseng's method: For $\lambda \in(0,1)$, converges Q-linearly with rate

$$
\rho(\lambda):=\sqrt{1-\lambda^{2}+\lambda^{4}}<1 .
$$

Thus, best convergence rate is $\rho(\lambda)=\sqrt{3} / 2$ with $\lambda=1 / \sqrt{2}$.

- FoRB: For $\lambda \approx 1 / 2$, converges with rate given by $\rho(\lambda) \approx \sqrt{2} / 2$.

Larger stepsizes are not necessarily better.

Shadow Douglas-Rachford Splitting

Theorem (Csetnek-Malitsky-T. 2019)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{3 L}\right)$ and set

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right)-\lambda\left(B\left(x_{k}\right)-B\left(x_{k-1}\right)\right) .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- Open question: How to incorporate a linesearch procedure?

Shadow Douglas-Rachford Splitting

Theorem (Csetnek-Malitsky-T. 2019)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{3 L}\right)$ and set

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right)-\lambda\left(B\left(x_{k}\right)-B\left(x_{k-1}\right)\right) .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.

- Converges under the exact same assumptions as Tseng's method.
- Requires one backward and one forward evaluation per iteration.
- Open question: How to incorporate a linesearch procedure?

Shadow Douglas-Rachford Splitting

Theorem (Csetnek-Malitsky-T. 2019)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz with $(A+B)^{-1}(0) \neq \emptyset$. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{3 L}\right)$ and set

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right)-\lambda\left(B\left(x_{k}\right)-B\left(x_{k-1}\right)\right) .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.

Proof sketch. Let $x \in(A+B)^{-1}$. Set $y_{k}=\lambda B\left(x_{k}\right)$ and $y=\lambda B(x)$. Then

Shadow Douglas-Rachford Splitting

Theorem (Csetnek-Malitsky-T. 2019)

Let $A: \mathcal{H} \rightrightarrows \mathcal{H}$ be maximally monotone and $B: \mathcal{H} \rightarrow \mathcal{H}$ be monotone and L-Lipschitz with $(A+B)^{-1}(0) \neq \emptyset$. Let $x_{0}, x_{-1} \in \mathcal{H}$, let $\lambda \in\left(0, \frac{1}{3 L}\right)$ and set

$$
x_{k+1}=J_{\lambda A}\left(x_{k}-\lambda B\left(x_{k}\right)\right)-\lambda\left(B\left(x_{k}\right)-B\left(x_{k-1}\right)\right) .
$$

Then $\left(x_{k}\right)_{k \in \mathbb{N}}$ converges weakly to some $\bar{x} \in \mathcal{H}$ such that $0 \in(A+B)(\bar{x})$.

Proof sketch. Let $x \in(A+B)^{-1}$. Set $y_{k}=\lambda B\left(x_{k}\right)$ and $y=\lambda B(x)$. Then

$$
\begin{aligned}
& \left\|\left(x_{k+1}+y_{k}\right)-(x+y)\right\|^{2}+\left(\frac{1}{3}+\epsilon\right)\left\|x_{k+1}-x_{k}\right\|^{2} \\
& \quad \leq\left\|\left(x_{k}+y_{k-1}\right)-(x+y)\right\|^{2}+\frac{1}{3}\left\|x_{k}-x_{k-1}\right\|^{2} .
\end{aligned}
$$

Shadow Douglas-Rachford Splitting

Douglas-Rachford splitting for " $0 \in(A+B)(z)$ ":

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$, gives the dynamical system

$$
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t))
$$

Express in terms of the shadow trajectory " $x(t)=J_{\lambda B}(z(t))^{\prime}$:

$$
\left\{\begin{array}{l}
\dot{x}(t)=J_{\lambda A}\left(x(t)-y^{\prime}(i)\right)-x^{\prime}(t)-\dot{y}^{\prime}(t) \tag{S-DR}\\
y(t)=\lambda B(x(t))
\end{array}\right.
$$

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$.

Discretising with $\dot{x}(t)=x_{k+1}-x_{k}$ and $\dot{y}(t)=y_{k+1}-y_{k}$ gives

$$
x_{k+1}=J_{\lambda A}\left(x_{t}-y_{k}\right)-\left(y_{k+1}-y_{k}\right)
$$

Shadow Douglas-Rachford Splitting

Douglas-Rachford splitting for " $0 \in(A+B)(z)$ ":

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$, gives the dynamical system

$$
\begin{equation*}
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t)) . \tag{DR}
\end{equation*}
$$

Express in terms of the shadow trajectory " $x(t)=J_{\lambda B}(z(t))$ ":

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$.

$$
\text { Discretising with } \dot{x}(t)=x_{k+1}-x_{k} \text { and } \dot{y}(t)=y_{k+1}-y_{k} \text { gives }
$$

Shadow Douglas－Rachford Splitting

Douglas－Rachford splitting for＂ $0 \in(A+B)(z)$＂：

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$ ，gives the dynamical system

$$
\begin{equation*}
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t)) . \tag{DR}
\end{equation*}
$$

Express in terms of the shadow trajectory＂$x(t)=J_{\lambda B}(z(t))$＂：

$$
\left\{\begin{array}{l}
\dot{x}(t)=J_{\lambda A}(x(t)-y(t))-x(t)-\dot{y}(t) \tag{S-DR}\\
y(t)=\lambda B(x(t))
\end{array}\right.
$$

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$ ．

Discretising with $\dot{x}(t)=x_{k+1}-x_{k}$ and $\dot{y}(t)=y_{k+1}-y_{k}$ gives

Shadow Douglas-Rachford Splitting

Douglas-Rachford splitting for " $0 \in(A+B)(z)$ ":

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$, gives the dynamical system

$$
\begin{equation*}
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t)) . \tag{DR}
\end{equation*}
$$

Express in terms of the shadow trajectory " $x(t)=J_{\lambda B}(z(t))$ ":

$$
\left\{\begin{array}{l}
\dot{x}(t)=J_{\lambda A}(x(t)-y(t))-x(t)-\dot{y}(t) \tag{S-DR}\\
y(t)=\lambda B(x(t))
\end{array}\right.
$$

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$.

Discretising with $\dot{x}(t)=x_{k+1}-x_{k}$ and $\dot{y}(t)=y_{k+1}-y_{k}$ gives

$$
x_{k+1}=J_{\lambda A}\left(x_{t}-y_{k}\right)-\left(y_{k+1}-y_{k}\right),
$$

Shadow Douglas-Rachford Splitting

Douglas-Rachford splitting for " $0 \in(A+B)(z)$ ":

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$, gives the dynamical system

$$
\begin{equation*}
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t)) . \tag{DR}
\end{equation*}
$$

Express in terms of the shadow trajectory " $x(t)=J_{\lambda B}(z(t))$ ":

$$
\left\{\begin{array}{l}
\dot{x}(t)=J_{\lambda A}(x(t)-y(t))-x(t)-\dot{y}(t) \tag{S-DR}\\
y(t)=\lambda B(x(t))
\end{array}\right.
$$

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$.

Discretising with $\dot{x}(t)=x_{k+1}-x_{k}$ and $\dot{y}(t)=y_{k}-y_{k-1}$ gives

$$
x_{k+1}=J_{\lambda A}\left(x_{t}-y_{k}\right)-\left(y_{k}-y_{k-1}\right),
$$

Shadow Douglas-Rachford Splitting

Douglas-Rachford splitting for " $0 \in(A+B)(z)$ ":

$$
z_{k+1}=z_{k}+J_{\lambda A}\left(2 J_{\lambda B}\left(z_{k}\right)-z_{k}\right)-J_{\lambda B}\left(z_{k}\right)
$$

Substitute $z(t)=z_{k}$ and $\dot{z}(t)=z_{k+1}-z_{k}$, gives the dynamical system

$$
\begin{equation*}
\dot{z}(t)=J_{\lambda A}\left(2 J_{\lambda B}(z(t))-z(t)\right)-J_{\lambda B}(z(t)) . \tag{DR}
\end{equation*}
$$

Express in terms of the shadow trajectory " $x(t)=J_{\lambda B}(z(t))$ ":

$$
\left\{\begin{array}{l}
\dot{x}(t)=J_{\lambda A}(x(t)-y(t))-x(t)-\dot{y}(t) \tag{S-DR}\\
y(t)=\lambda B(x(t))
\end{array}\right.
$$

where we note that $x(t)=(I+\lambda B)^{-1}(z(t)) \Longleftrightarrow x(t)+y(t)=z(t)$.

Discretising with $\dot{x}(t)=x_{k+1}-x_{k}$ and $\dot{y}(t)=y_{k}-y_{k-1}$ gives

$$
x_{k+1}=J_{\lambda A}\left(x_{t}-y_{k}\right)-\left(y_{k}-y_{k-1}\right),
$$

which is exactly the iteration from the previous slide.

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$
\binom{0}{0} \in \underbrace{\binom{\partial g(x)}{\partial f(y)}}_{A(z)}+\underbrace{\binom{\nabla_{x} \Phi(x, y)}{-\nabla_{y} \Phi(x, y)}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}
$$

Applying the forward reflected backward method yields

In the case when $f=g=0$, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$
\binom{0}{0} \in \underbrace{\binom{\partial g(x)}{\partial f(y)}}_{A(z)}+\underbrace{\binom{\nabla_{x} \Phi(x, y)}{-\nabla_{y} \Phi(x, y)}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}
$$

Applying the forward reflected backward method yields

$$
\left\{\begin{array}{l}
x_{k+1}=\operatorname{prox}_{\lambda g}\left(x_{k}-2 \lambda \nabla_{x} \Phi\left(x_{k}, y_{k}\right)+\lambda \nabla_{x} \Phi\left(x_{k}, y_{k}\right)\right) \\
y_{k+1}=\operatorname{prox}_{\lambda f}\left(y_{k}+2 \lambda \nabla_{y} \Phi\left(x_{k}, y_{k}\right)-\lambda \nabla_{y} \Phi\left(x_{k}, y_{k}\right)\right) .
\end{array}\right.
$$

In the case when $f=g=0$, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

An Application: Optimistic Gradient Descent Ascent

Recall, the inclusion associated with the saddle point problem:

$$
\binom{0}{0} \in \underbrace{\binom{\partial g(x)}{\partial f(y)}}_{A(z)}+\underbrace{\binom{\nabla_{x} \Phi(x, y)}{-\nabla_{y} \Phi(x, y)}}_{B(z)} \subseteq \mathcal{H} \times \mathcal{H}
$$

Applying the forward reflected backward method yields

$$
\left\{\begin{array}{l}
x_{k+1}=\operatorname{prox}_{\lambda g}\left(x_{k}-2 \lambda \nabla_{x} \Phi\left(x_{k}, y_{k}\right)+\lambda \nabla_{x} \Phi\left(x_{k}, y_{k}\right)\right) \\
y_{k+1}=\operatorname{prox}_{\lambda f}\left(y_{k}+2 \lambda \nabla_{y} \Phi\left(x_{k}, y_{k}\right)-\lambda \nabla_{y} \Phi\left(x_{k}, y_{k}\right)\right) .
\end{array}\right.
$$

In the case when $f=g=0$, FoRB spltting:

- Coincides with the shadow Douglas-Rachford method.
- Coincides with optimistic gradient descent ascent (OGDA) method from ML used for training generative adverserial networks (GANs) (Daskalaski et al, 2018).

Concluding Remarks

- Two simple modification of the forward-backward algorithm allows for the assumption of cocoercivity to avoided.
- Only require one evaluation of B per iteration (Tseng needs two).

Open questions and directions for further reserach:

- Do there exist a useful fixed point interpretation of the methods?
- Is there a continuous dynamical system associated with the FoRB?
- Can a linesearch be incorporated into the shadow DR method?

围 A forward-backward splitting method for monotone inclusions without cocoercivity with Y. Malitsky. arXiv:1808.04162.
击 Shadow Douglas-Rachford splitting for monotone inclusions with E.R. Csetnek and Malitsky. Appl Math \& Optim, p. 1-14, 2019.

