
Douglas–Rachford for Combinatorial Optimisation

Matthew K. Tam
Joint work with Dr. Fran Aragón and Laur. Prof. Jon Borwein

School of Mathematical and Physical Sciences
University of Newcastle, Australia

AMSSC, 15th–17th July 2013

With generous support from AustMS and AMSSC

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Introduction

In Sudoku the player fills entries of an incomplete Latin square
subject to constraints. As a decision problem, it is NP-complete.

Some questions to ponder during this talk are:

How can we solve large Sudoku puzzles? (n2 × n2 instances)

If any single entry is removed, how many distinct solutions
can a puzzle have?

Can such characteristics be used to better understand why
algorithms work?

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Introduction

The Douglas–Rachford method (a projection algorithm) was
originally introduced in connection with PDEs arising in heat
conduction. Applied to convex problems, the methods have a
strong theoretical foundation, and its behaviour well understood.

I will discuss recent applications of the Douglas–Rachford method
to a number of NP-complete combinatorial optimisation problems
which are far from convex. Despite a lack of sufficient theoretical
justification, the method performs quite satisfactorily.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x x

p1

p2

r1

r2

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x

p

x

p1

p2

r1

r2

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x

p

x

p1

p2

r1

r2

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x

p

r

x

p1

p2

r1

r2

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .

x

p

r

x

p1

p2

r1

r2

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

PC1 ,PC2 ,PC3 ,PC4 are simple to compute since, for any x ∈ R9,

PEx = {ej : xj = max
1≤i≤9

xi}.

PC5 is also simple and given by setting Aijk = 1 if the incomplete
puzzle has a k in the ijth position.

Reformulate as a two set feasibility problem in the product space:

x ∈
5⋂

i=1

Ci ⊆ R9×9×9 ⇐⇒ (x , x , x , x , x) ∈ D ∩ C ⊆ (R9×9×9)5,

where

D := {(x , x , x , x , x) ∈ (R9×9×9)5 : x ∈ R9×9×9}, C :=
5∏

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Modelling Sudoku: an NP-Complete Non-Convex Problem

PC1 ,PC2 ,PC3 ,PC4 are simple to compute since, for any x ∈ R9,

PEx = {ej : xj = max
1≤i≤9

xi}.

PC5 is also simple and given by setting Aijk = 1 if the incomplete
puzzle has a k in the ijth position.

Reformulate as a two set feasibility problem in the product space:

x ∈
5⋂

i=1

Ci ⊆ R9×9×9 ⇐⇒ (x , x , x , x , x) ∈ D ∩ C ⊆ (R9×9×9)5,

where

D := {(x , x , x , x , x) ∈ (R9×9×9)5 : x ∈ R9×9×9}, C :=
5∏

i=1

Ci .

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Details

We tested the Douglas–Rachford method (C++) on various large
suites of Sudoku puzzles. We give details of the implementation.

Initialise: x0 = (x0, x0, x0, x0, x0) for random x0 ∈ [0, 1]9×9×9.

Iterate: By setting

xn+1 = Txn =
xn + RCRDxn

2
.

Terminate: Either, if a solution is found, or if 10000 iterations
have been performed. Specifically, a solution is found if

PDxn ∈ C ∩ D.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Details

We tested the Douglas–Rachford method (C++) on various large
suites of Sudoku puzzles. We give details of the implementation.

Initialise: x0 = (x0, x0, x0, x0, x0) for random x0 ∈ [0, 1]9×9×9.

Iterate: By setting

xn+1 = Txn =
xn + RCRDxn

2
.

Terminate: Either, if a solution is found, or if 10000 iterations
have been performed. Specifically, a solution is found if

round(PDxn) ∈ C ∩ D.

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Results: Success Rate

Table 1. % Solved by Test Library.
top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR 86.53 99.35 99.59 92 100

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku cannot be solved reliably (20.2% success rate)
by the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single
entry is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any
single entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku cannot be solved reliably (20.2% success rate)
by the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single
entry is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any
single entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku cannot be solved reliably (20.2% success rate)
by the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single
entry is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any
single entry is removed:

Top left 7 = 5

Any other entry = 200–3800

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Results: Performance Comparison

Table 2. Average Runtime (seconds).
top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR 1.432 0.279 0.509 5.064 4.011
Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Computational Results: Performance Comparison

Table 2. Average Runtime (seconds).
top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR 1.432 0.279 0.509 5.064 4.011
Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation



Concluding Remarks

When presented with a combinatorial feasibility problem it is
well worth seeing if the Douglas–Rachford method can deal
with it. It is conceptually simple, and easy to implement.

Other successful non-convex applications include:

Boolean satisfiability, protein folding, graph colouring.

TetraVex, generalised 8-queens problem.

Nonograms – a Japanese number painting

Matrix completion. e.g. low rank, various Hadamard matrices.

Any suggestions?

F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. Recent Results on Douglas–Rachford
Methods for Combinatorial Optimization Problems. Submitted, 2013.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/comb-opt/

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation

http://carma.newcastle.edu.au/DRmethods/comb-opt/


Concluding Remarks

When presented with a combinatorial feasibility problem it is
well worth seeing if the Douglas–Rachford method can deal
with it. It is conceptually simple, and easy to implement.

Other successful non-convex applications include:

Boolean satisfiability, protein folding, graph colouring.

TetraVex, generalised 8-queens problem.

Nonograms – a Japanese number painting

Matrix completion. e.g. low rank, various Hadamard matrices.

Any suggestions?

F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. Recent Results on Douglas–Rachford
Methods for Combinatorial Optimization Problems. Submitted, 2013.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/comb-opt/

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation

http://carma.newcastle.edu.au/DRmethods/comb-opt/


The ‘Nasty’ Suduoku and its Unique Solution

Matthew K. Tam Douglas–Rachford for Combinatorial Optimisation


