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Introduction

In Sudoku the player fills entries of an incomplete Latin square
subject to constraints. As a decision problem, it is NP-complete.

Some questions to ponder during this talk are:

How can we solve large Sudoku puzzles? (n2 × n2 instances)

If any single entry is removed, how many distinct solutions
can a puzzle have?

Can such characteristics be used to better understand why
algorithms work?
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Introduction

The Douglas–Rachford method (a projection algorithm) was
originally introduced in connection with PDEs arising in heat
conduction. Applied to convex problems, the methods have a
strong theoretical foundation, and its behaviour well understood.

I will discuss recent applications of the Douglas–Rachford method
to a number of NP-complete combinatorial optimisation problems
which are far from convex. Despite a lack of sufficient theoretical
justification, the method performs quite satisfactorily.
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A Variational Toolkit

Let S ⊆ Rn. Recall, S is convex if

λS + (1− λ)S ∈ S , ∀λ ∈ [0, 1].

The (nearest point) projection onto S is the (set-valued) mapping,

PSx := argmin
s∈S

‖s − x‖.

The reflection w.r.t. S is the (set-valued) mapping,

RS := 2PS − I .
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The Douglas–Rachford Scheme

Theorem (Douglas–Rachford, Lions–Mercier)

Suppose A,B ⊆ Rn are closed and convex with A ∩ B 6= ∅. For
any x0 ∈ Rn define

xn+1 := Txn where T :=
I + RBRA

2
.

Then (xn) converges to a point x such that PAx ∈ A ∩ B.

xn

RAxn

RBRAxn

xn+1 = Txn

A

B

A = {x ∈ Rn : ‖x‖ ≤ 1}, B = {x ∈ Rn : 〈a, x〉 = b}.
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Modelling Sudoku: an NP-Complete Non-Convex Problem

Let E = {ej : j = 1, . . . , 9} ⊂ R9 be the standard unit vectors.
Define the array X = (Xijk) ∈ R9×9×9 by

Xijk =

{
1 if ijth entry is k ,
0 otherwise.

The constraints are:

C1 = {X : Xij ∈ E}
C2 = {X : Xik ∈ E}
C3 = {X : Xjk ∈ E}
C4 = {X : vec(3× 3 submatrix) ∈ E}
C5 = {X : X matches original puzzle}

A solution is any

X ∈
5⋂

i=1

Ci .
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Modelling Sudoku: an NP-Complete Non-Convex Problem

PC1 ,PC2 ,PC3 ,PC4 are simple to compute since, for any x ∈ R9,

PEx = {ej : xj = max
1≤i≤9

xi}.

PC5 is also simple and given by setting Aijk = 1 if the incomplete
puzzle has a k in the ijth position.

Reformulate as a two set feasibility problem in the product space:

x ∈
5⋂

i=1

Ci ⊆ R9×9×9 ⇐⇒ (x , x , x , x , x) ∈ D ∩ C ⊆ (R9×9×9)5,

where

D := {(x , x , x , x , x) ∈ (R9×9×9)5 : x ∈ R9×9×9}, C :=
5∏

i=1

Ci .
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Computational Details

We tested the Douglas–Rachford method (C++) on various large
suites of Sudoku puzzles. We give details of the implementation.

Initialise: x0 = (x0, x0, x0, x0, x0) for random x0 ∈ [0, 1]9×9×9.

Iterate: By setting

xn+1 = Txn =
xn + RCRDxn

2
.

Terminate: Either, if a solution is found, or if 10000 iterations
have been performed. Specifically, a solution is found if

PDxn ∈ C ∩ D.
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Computational Results: Success Rate

Table 1. % Solved by Test Library.
top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR 86.53 99.35 99.59 92 100
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Computational Example: A ‘Nasty’ Sudoku

This ‘nasty’ Sudoku cannot be solved reliably (20.2% success rate)
by the Douglas–Rachford method.

7 9 5

1 3

2 3 7

4 5 7

8 2

6 4

9 1

8 6

5 4 7

Success rate when any single
entry is removed:

Top left 7 = 24%

Any other entry = 99%

Number of solutions when any
single entry is removed:

Top left 7 = 5

Any other entry = 200–3800
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Computational Results: Performance Comparison

Table 2. Average Runtime (seconds).
top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR 1.432 0.279 0.509 5.064 4.011
Gurobi 0.063 0.059 0.063 0.168 0.401
YASS 2.256 0.039 0.654 - -
DLX 1.386 0.105 3.871 - -
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Concluding Remarks

When presented with a combinatorial feasibility problem it is
well worth seeing if the Douglas–Rachford method can deal
with it. It is conceptually simple, and easy to implement.

Other successful non-convex applications include:

Boolean satisfiability, protein folding, graph colouring.

TetraVex, generalised 8-queens problem.

Nonograms – a Japanese number painting

Matrix completion. e.g. low rank, various Hadamard matrices.

Any suggestions?

F.J. Aragón Artacho, J.M. Borwein & M.K. Tam. Recent Results on Douglas–Rachford
Methods for Combinatorial Optimization Problems. Submitted, 2013.

Many resources can be found at the companion website:

http://carma.newcastle.edu.au/DRmethods/comb-opt/
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The ‘Nasty’ Suduoku and its Unique Solution
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