Douglas-Rachford for Combinatorial Optimisation

Matthew K. Tam
Joint work with Dr. Fran Aragón and Laur. Prof. Jon Borwein

School of Mathematical and Physical Sciences
University of Newcastle, Australia

AMSSC, 15th-17th July 2013

With generous support from AustMS and AMSSC

Introduction

In Sudoku the player fills entries of an incomplete Latin square subject to constraints. As a decision problem, it is NP-complete.

		5	3					
8							2	
	7			1		5		
4					5	3		
	1			7				6
		3	2				8	
	6		5					9
		4					3	
					9	7		

1	4	5	3	2	7	6	9	8
8	3	9	6	5	4	1	2	7
6	7	2	9	1	8	5	4	3
4	9	6	1	8	5	3	7	2
2	1	8	4	7	3	9	5	6
7	5	3	2	9	6	4	8	1
3	6	7	5	4	2	1	8	9
9	8	4	7	6	1	2	3	5
5	2	1	8	3	9	7	6	4

Some questions to ponder during this talk are:

- How can we solve large Sudoku puzzles? $\left(n^{2} \times n^{2}\right.$ instances)
- If any single entry is removed, how many distinct solutions can a puzzle have?
- Can such characteristics be used to better understand why algorithms work?

Introduction

The Douglas-Rachford method (a projection algorithm) was originally introduced in connection with PDEs arising in heat conduction. Applied to convex problems, the methods have a strong theoretical foundation, and its behaviour well understood.

I will discuss recent applications of the Douglas-Rachford method to a number of NP-complete combinatorial optimisation problems which are far from convex. Despite a lack of sufficient theoretical justification, the method performs quite satisfactorily.

A Variational Toolkit

Let $S \subseteq \mathbb{R}^{n}$. Recall, S is convex if

$$
\lambda S+(1-\lambda) S \in S, \quad \forall \lambda \in[0,1] .
$$

The (nearest point) projection onto S is the (set-valued) mapping,

$$
P_{S} x:=\underset{s \in S}{\operatorname{argmin}}\|s-x\| .
$$

The reflection w.r.t. S is the (set-valued) mapping,

$$
R_{S}:=2 P_{S}-I .
$$

A Variational Toolkit

Let $S \subseteq \mathbb{R}^{n}$. Recall, S is convex if

$$
\lambda S+(1-\lambda) S \in S, \quad \forall \lambda \in[0,1] .
$$

The (nearest point) projection onto S is the (set-valued) mapping,

$$
P_{S} x:=\underset{s \in S}{\operatorname{argmin}}\|s-x\| .
$$

The reflection w.r.t. S is the (set-valued) mapping,

$$
R_{S}:=2 P_{S}-I .
$$

A Variational Toolkit

Let $S \subseteq \mathbb{R}^{n}$. Recall, S is convex if

$$
\lambda S+(1-\lambda) S \in S, \quad \forall \lambda \in[0,1] .
$$

The (nearest point) projection onto S is the (set-valued) mapping,

$$
P_{S} x:=\underset{s \in S}{\operatorname{argmin}}\|s-x\| .
$$

The reflection w.r.t. S is the (set-valued) mapping,

$$
R_{S}:=2 P_{S}-I .
$$

A Variational Toolkit

Let $S \subseteq \mathbb{R}^{n}$. Recall, S is convex if

$$
\lambda S+(1-\lambda) S \in S, \quad \forall \lambda \in[0,1] .
$$

The (nearest point) projection onto S is the (set-valued) mapping,

$$
P_{S} x:=\underset{s \in S}{\operatorname{argmin}}\|s-x\| .
$$

The reflection w.r.t. S is the (set-valued) mapping,

$$
R_{S}:=2 P_{S}-I .
$$

A Variational Toolkit

Let $S \subseteq \mathbb{R}^{n}$. Recall, S is convex if

$$
\lambda S+(1-\lambda) S \in S, \quad \forall \lambda \in[0,1] .
$$

The (nearest point) projection onto S is the (set-valued) mapping,

$$
P_{S} x:=\underset{s \in S}{\operatorname{argmin}}\|s-x\| .
$$

The reflection w.r.t. S is the (set-valued) mapping,

$$
R_{S}:=2 P_{S}-I .
$$

The Douglas-Rachford Scheme

Theorem (Douglas-Rachford, Lions-Mercier)

Suppose $A, B \subseteq \mathbb{R}^{n}$ are closed and convex with $A \cap B \neq \emptyset$. For any $x_{0} \in \mathbb{R}^{n}$ define

$$
x_{n+1}:=T x_{n} \text { where } T:=\frac{I+R_{B} R_{A}}{2} .
$$

Then $\left(x_{n}\right)$ converges to a point x such that $P_{A} x \in A \cap B$.

$$
A=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad B=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=b\right\} .
$$

The Douglas-Rachford Scheme

Theorem (Douglas-Rachford, Lions-Mercier)

Suppose $A, B \subseteq \mathbb{R}^{n}$ are closed and convex with $A \cap B \neq \emptyset$. For any $x_{0} \in \mathbb{R}^{n}$ define

$$
x_{n+1}:=T x_{n} \text { where } T:=\frac{I+R_{B} R_{A}}{2} .
$$

Then $\left(x_{n}\right)$ converges to a point x such that $P_{A} x \in A \cap B$.

$$
A=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad B=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=b\right\} .
$$

The Douglas-Rachford Scheme

Theorem (Douglas-Rachford, Lions-Mercier)

Suppose $A, B \subseteq \mathbb{R}^{n}$ are closed and convex with $A \cap B \neq \emptyset$. For any $x_{0} \in \mathbb{R}^{n}$ define

$$
x_{n+1}:=T x_{n} \text { where } T:=\frac{I+R_{B} R_{A}}{2} .
$$

Then $\left(x_{n}\right)$ converges to a point x such that $P_{A} x \in A \cap B$.

$$
A=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad B=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=b\right\} .
$$

The Douglas-Rachford Scheme

Theorem (Douglas-Rachford, Lions-Mercier)

Suppose $A, B \subseteq \mathbb{R}^{n}$ are closed and convex with $A \cap B \neq \emptyset$. For any $x_{0} \in \mathbb{R}^{n}$ define

$$
x_{n+1}:=T x_{n} \text { where } T:=\frac{I+R_{B} R_{A}}{2} .
$$

Then $\left(x_{n}\right)$ converges to a point x such that $P_{A} x \in A \cap B$.

$$
A=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad B=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=b\right\} .
$$

The Douglas-Rachford Scheme

Theorem (Douglas-Rachford, Lions-Mercier)

Suppose $A, B \subseteq \mathbb{R}^{n}$ are closed and convex with $A \cap B \neq \emptyset$. For any $x_{0} \in \mathbb{R}^{n}$ define

$$
x_{n+1}:=T x_{n} \text { where } T:=\frac{I+R_{B} R_{A}}{2} .
$$

Then $\left(x_{n}\right)$ converges to a point x such that $P_{A} x \in A \cap B$.

$$
A=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}, \quad B=\left\{x \in \mathbb{R}^{n}:\langle a, x\rangle=b\right\} .
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k, \\ 0 & \text { otherwise }\end{cases}
$$

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k \\ 0 & \text { otherwise }\end{cases}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k \\ 0 & \text { otherwise }\end{cases}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k, \\ 0 & \text { otherwise. }\end{cases}
$$

The constraints are:

$$
\begin{aligned}
& C_{1}=\left\{X: X_{i j} \in E\right\} \\
& C_{2}=\left\{X: X_{i k} \in E\right\} \\
& C_{3}=\left\{X: X_{j k} \in E\right\} \\
& C_{4}=\{X: \text { vec }(3 \times 3 \text { submatrix }) \in E\} \\
& C_{5}=\{X: X \text { matches original puzzle }\}
\end{aligned}
$$

A solution is any

$$
X \in \bigcap_{i=1}^{5} C_{i}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j t h \text { entry is } k, \\ 0 & \text { otherwise. }\end{cases}
$$

The constraints are:

$$
\begin{aligned}
& C_{1}=\left\{X: X_{i j} \in E\right\} \\
& C_{2}=\left\{X: X_{i k} \in E\right\} \\
& C_{3}=\left\{X: X_{j k} \in E\right\} \\
& C_{4}=\{X: \text { vec }(3 \times 3 \text { submatrix }) \in E\} \\
& C_{5}=\{X: X \text { matches original puzzle }\}
\end{aligned}
$$

A solution is any

$$
X \in \bigcap_{i=1}^{5} C_{i}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k, \\ 0 & \text { otherwise. }\end{cases}
$$

The constraints are:

$$
\begin{aligned}
& C_{1}=\left\{X: X_{i j} \in E\right\} \\
& C_{2}=\left\{X: X_{i k} \in E\right\} \\
& C_{3}=\left\{X: X_{j k} \in E\right\} \\
& C_{4}=\{X: \text { vec }(3 \times 3 \text { submatrix }) \in E\} \\
& C_{5}=\{X: X \text { matches original puzzle }\}
\end{aligned}
$$

A solution is any

$$
X \in \bigcap_{i=1}^{5} C_{i}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k, \\ 0 & \text { otherwise. }\end{cases}
$$

The constraints are:

$$
\begin{aligned}
& C_{1}=\left\{X: X_{i j} \in E\right\} \\
& C_{2}=\left\{X: X_{i k} \in E\right\} \\
& C_{3}=\left\{X: X_{j k} \in E\right\} \\
& C_{4}=\{X: \text { vec }(3 \times 3 \text { submatrix }) \in E\} \\
& C_{5}=\{X: X \text { matches original puzzle }\}
\end{aligned}
$$

A solution is any

$$
X \in \bigcap_{i=1}^{5} C_{i}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

Let $E=\left\{e_{j}: j=1, \ldots, 9\right\} \subset \mathbb{R}^{9}$ be the standard unit vectors. Define the array $X=\left(X_{i j k}\right) \in \mathbb{R}^{9 \times 9 \times 9}$ by

$$
X_{i j k}= \begin{cases}1 & \text { if } i j \text { th entry is } k, \\ 0 & \text { otherwise. }\end{cases}
$$

The constraints are:

$$
\begin{aligned}
& C_{1}=\left\{X: X_{i j} \in E\right\} \\
& C_{2}=\left\{X: X_{i k} \in E\right\} \\
& C_{3}=\left\{X: X_{j k} \in E\right\} \\
& C_{4}=\{X: \text { vec }(3 \times 3 \text { submatrix }) \in E\} \\
& C_{5}=\{X: X \text { matches original puzzle }\}
\end{aligned}
$$

A solution is any

$$
X \in \bigcap_{i=1}^{5} C_{i}
$$

Modelling Sudoku: an NP-Complete Non-Convex Problem

$P_{C_{1}}, P_{C_{2}}, P_{C_{3}}, P_{C_{4}}$ are simple to compute since, for any $x \in \mathbb{R}^{9}$,

$$
P_{E} X=\left\{e_{j}: x_{j}=\max _{1 \leq i \leq 9} x_{i}\right\}
$$

$P_{C_{5}}$ is also simple and given by setting $A_{i j k}=1$ if the incomplete puzzle has a k in the ijth position.

Modelling Sudoku: an NP-Complete Non-Convex Problem

$P_{C_{1}}, P_{C_{2}}, P_{C_{3}}, P_{C_{4}}$ are simple to compute since, for any $x \in \mathbb{R}^{9}$,

$$
P_{E} X=\left\{e_{j}: x_{j}=\max _{1 \leq i \leq 9} x_{i}\right\}
$$

$P_{C_{5}}$ is also simple and given by setting $A_{i j k}=1$ if the incomplete puzzle has a k in the ijth position.

Reformulate as a two set feasibility problem in the product space:

$$
x \in \bigcap_{i=1}^{5} C_{i} \subseteq \mathbb{R}^{9 \times 9 \times 9} \Longleftrightarrow(x, x, x, x, x) \in D \cap C \subseteq\left(\mathbb{R}^{9 \times 9 \times 9}\right)^{5},
$$

where

$$
D:=\left\{(x, x, x, x, x) \in\left(\mathbb{R}^{9 \times 9 \times 9}\right)^{5}: x \in \mathbb{R}^{9 \times 9 \times 9}\right\}, \quad C:=\prod_{i=1}^{5} C_{i}
$$

Computational Details

We tested the Douglas-Rachford method ($\mathrm{C}++$) on various large suites of Sudoku puzzles. We give details of the implementation.

- Initialise: $\mathbf{x}_{0}=\left(x_{0}, x_{0}, x_{0}, x_{0}, x_{0}\right)$ for random $x_{0} \in[0,1]^{9 \times 9 \times 9}$.
- Iterate: By setting

$$
\mathbf{x}_{n+1}=T \mathbf{x}_{n}=\frac{\mathbf{x}_{n}+R_{C} R_{D} \mathbf{x}_{n}}{2}
$$

- Terminate: Either, if a solution is found, or if 10000 iterations have been performed. Specifically, a solution is found if

$$
P_{D} \mathbf{x}_{n} \in C \cap D
$$

Computational Details

We tested the Douglas-Rachford method (C++) on various large suites of Sudoku puzzles. We give details of the implementation.

- Initialise: $\mathbf{x}_{0}=\left(x_{0}, x_{0}, x_{0}, x_{0}, x_{0}\right)$ for random $x_{0} \in[0,1]^{9 \times 9 \times 9}$.
- Iterate: By setting

$$
\mathbf{x}_{n+1}=T \mathbf{x}_{n}=\frac{\mathbf{x}_{n}+R_{C} R_{D} \mathbf{x}_{n}}{2}
$$

- Terminate: Either, if a solution is found, or if 10000 iterations have been performed. Specifically, a solution is found if

$$
\operatorname{round}\left(P_{D} \mathbf{x}_{n}\right) \in C \cap D
$$

Computational Results: Success Rate

Table 1. \% Solved by Test Library.

	top95	reglib-1.3	minimal1000	ksudoku16	ksudoku25
DR	86.53	99.35	99.59	92	100

Computational Example: A 'Nasty' Sudoku

This 'nasty' Sudoku cannot be solved reliably (20.2% success rate) by the Douglas-Rachford method.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Computational Example: A 'Nasty’ Sudoku

This 'nasty' Sudoku cannot be solved reliably (20.2\% success rate) by the Douglas-Rachford method.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Success rate when any single entry is removed:

- Top left $7=24 \%$
- Any other entry $=99 \%$

Computational Example: A 'Nasty' Sudoku

This 'nasty' Sudoku cannot be solved reliably (20.2\% success rate) by the Douglas-Rachford method.

7					9		5	
	1						3	
		2	3			7		
		4	5				7	
8						2		
					6	4		
	9			1				
	8			6				
		5	4					7

Success rate when any single entry is removed:

- Top left $7=24 \%$
- Any other entry $=99 \%$

Number of solutions when any single entry is removed:

- Top left $7=5$
- Any other entry $=200-3800$

Computational Results: Performance Comparison

Computational Results: Performance Comparison

Table 2. Average Runtime (seconds). top95 reglib-1.3 minimal1000 ksudoku16 ksudoku25

DR	1.432	0.279	0.509	5.064	4.011
Gurobi	0.063	0.059	0.063	0.168	0.401
YASS	2.256	0.039	0.654	-	-
DLX	1.386	0.105	3.871	-	-

Concluding Remarks

When presented with a combinatorial feasibility problem it is well worth seeing if the Douglas-Rachford method can deal with it. It is conceptually simple, and easy to implement.

Other successful non-convex applications include:

- Boolean satisfiability, protein folding, graph colouring.
- TetraVex, generalised 8-queens problem.
- Nonograms - a Japanese number painting
- Matrix completion. e.g. low rank, various Hadamard matrices.
- Any suggestions?

Concluding Remarks

When presented with a combinatorial feasibility problem it is well worth seeing if the Douglas-Rachford method can deal with it. It is conceptually simple, and easy to implement.

Other successful non-convex applications include:

- Boolean satisfiability, protein folding, graph colouring.
- TetraVex, generalised 8-queens problem.
- Nonograms - a Japanese number painting
- Matrix completion. e.g. low rank, various Hadamard matrices.
- Any suggestions?
F.J. Aragón Artacho, J.M. Borwein \& M.K. Tam. Recent Results on Douglas-Rachford Methods for Combinatorial Optimization Problems. Submitted, 2013.
Many resources can be found at the companion website:
http://carma.newcastle.edu.au/DRmethods/comb-opt/

The 'Nasty' Suduoku and its Unique Solution

7					9		5
	1						3
		2	3			7	
		4	5				
8						2	
					6	4	
9			1				
	8			6			
		5	4				

7	4	3	8	2	9	1	5
6							
5	1	8	6	4	7	9	3
2							
9	6	2	3	5	1	7	4
8							
6	2	4	5	9	8	3	7
8	7	9	1	3	4	2	6
3	5	1	2	7	6	4	8
4	9	6	7	1	5	8	2
2	8	7	9	6	3	5	1
1	3	5	4	8	2	6	4

